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Olympiad Corner 
 
Below were the Day 1 problems of the 
Croatian Mathematical Olympiad 
which took place on May 5, 2018.  

 
Problem A1. Let a, b and c be positive 
real numbers such that a+b+c=2. 
Prove that  
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Problem C1. Let n be a positive 
integer. A good word is a sequence of 
3n letters, in which each of the letters 
A, B and C appears exactly n times. 
Prove that for every good word X there 
exists a good word Y such that Y cannot 
be obtained from X by swapping 
neighbouring letters fewer than 3n2/2 
times. 
 
Problem G1. Let k be a circle centered 
at O. Let AB  be a chord of that circle 
and M its midpoint. Tangent on k at 
points A and B intersect at T. The line 
  goes through T, intersects the 
shorter arc AB at the point C and the 
longer arc AB at the point D, so that 
|BC|=|BM|.  

 
                                 (continued on page 4)                    

Austrian Math Problems  
Kin Y. Li 

  
    In this article, we would like to look 
at some of the Austrian Math Olympiad 
problems. This competition is going 
into its 50th year. For the young math 
students, the Austrian math problems 
are treasures that are everlasting, 
especially the problems appeared in the 
recent decades. Below are some 
examples that we hope you will enjoy.  
 
Example 1. (Beginners Competition: 
June 7th, 2001) Prove that the number 
nn-1 is divisible by 24 for all odd 
positive integer values of n.  
 
Solution. Since n is an odd positive 
integer, we can write n=2k+1 with 
k=0,1,2,…. Substituting yields   

nn-1=n(nn-1-1)=n(n2k-1). 
 
Since 12≡32≡52≡72≡1 (mod 8), we see 
that n2k≡1 (mod 8) certainly holds, and 
n2k-1 is therefore divisible by 8.   
 
If n is divisible by 3, we see that 
n(n2k-1) is certainly divisible by 3·8=24 
as required. If n is not divisible by 3, we 
note that 12≡22≡1 (mod 3), and n2k≡1 
(mod 3) holds, so that n2k-1 is not only 
divisible by 8, but also by 3. It follows 
that n2k-1 is therefore divisble by 
3·8=24, and therefore so is n(n2k-1) as 
required. 
 
Example 2 (National Competition: June 
6th, 2002) Let ABCD and AEFG be 
similar inscribed quadrilaterals, whose 
vertices are labeled counter-clockwise. 
Let P be the second common point of 
the circumcircles of the quadrilaterals 
beside A. Show that P must lie on the 
line connecting B and E. 
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Solution. Rotation and stretching with 
center A, ∠BAC and factor AB:AC maps 
B onto C and E onto F. This mapping 
therefore transforms the line BE=BQ 
onto the line FC=FQ, whereby we let Q 
denote the point of intersection of lines 
BE and FC. Since this mapping rotates 
by ∠BAC, this is also the angle between 
the lines BQ and FQ, and since this is 
equal to ∠BAC (or its supplement), Q 
must lie on the circumcircle of ∆ABC, 
which is also the circumcircle of ABCD. 
By analogous reasoning, it must also lie 
on the circumcircle of AEFG, and we 
see that P=Q must hold, which proves 
that P must lie on the line BE, as 
required. 
 
Example 3 (National Competition: May 
26th, 2004). Prove without the use of 
calculus: 
 
a) If a, b, c and d are real numbers, then 

           a6+b6+c6+d6-6abcd ≥ -2 
 
holds. When does equality hold? 
 
b) For which positive integers k does 
there exist an inequality of the form  

           ak+bk+ck+dk-kabcd ≥ Mk  
that holds for all real values of a, b, c   
and d?   Determine the largest possible 
values of Mk and determine when 
equality holds. 
 
Solution. a) The given inequality can be 
proved by applying the AM-GM 
inequality as 
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Equality holds for |a|=|b|=|c|=|d|=1, 
more precisely when (a,b,c,d) equals 
one of 
 

 (1,1,1,1), (1,1,-1,-1), (1,-1,1,-1), 

(-1,1,1,-1), (1,-1,-1,1), (-1,1,-1,1), 

(-1,-1,1,1) or (-1,-1,-1,-1). 
 
 
                                  (continued on page 2) 
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b) First of all, we note that no such 
number Mk can possibly exist if k is 
odd, since a choice of negative values 
for a, b, c and d with sufficiently large 
absolute value yields negative values 
with arbitrary large absolute value for 
the expression ak+bk+ck+dk-kabcd.  
 
Similarly, no such number exists for 
k=2, since a choice of a=b=c=d=r 
yields a2+b2+c2+d2-2abcd = 4r2-2r4, 
for which a choice of sufficiently large 
values of r again yields negative values 
with arbitrarily large absolute value.  
 
This leaves even values of k with k≥4 
to consider. In this case, choosing 
a=b=c=d=1 yield ak+bk+ck+dk-kabcd 
= 4-k, and as in a), we can apply 
AM-GM inequality to get  
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with equality for the same values of 
(a,b,c,d) as in a). 
 
Example 4  (National Competition: 
June 6th, 2007) We are given a convex 
n-gon with a triangulation, i.e. a 
division into triangles by non- 
intersecting diagonals. Prove that the n 
corners of the n-gon can each be 
labeled by the digits of 2007 such that 
any quadrilateral composed of two 
triangles in the triangulation with a 
common side has corners labeled by 
digits with the sum 9.  
 
Solution. We shall prove this by 
induction on n. If n=4, we label the 
vertices 2, 0, 0, 7 and the claim holds. 
(Note that this is the only possible 
combination of digits summing to 9, 
since 4·2<9 and 2·7>9 hold. Also note 
that the three corners of any triangle 
must be labeled with three of the digits 
2, 0, 0, 7.)  
 
We now assume that the claim holds as 
stated for any convex n-gon, and 
consider a convex (n+1)-gon. Any 
triangulation of such an (n+1)-gon 
certainly contains at least one triangle 
(in fact, at least two), two of whose 
sides are consecutive sides of the 
(n+1)-gon with common vertex V. The 
n-gon obtained by removing this one 
triangle from the triangulation with the 
implied triangulation in the remaining 
n-gon as given can certainly be labeled 
as required.  
 

We now note that the triangle with vertex 
V only has a side in common with one 
other triangle of the triangulation, the 
corners of which are already labeled with 
three of the four required digits. Labelling 
V with the fourth digit results in a labeling 
of the (n+1)-gon with the required 
property. 
 
Example 5 (National Competition: June 
3rd, 2010) A diagonal in a hexagon is 
considered a long diagonal if it divides the 
hexagon into two quadrilaterals. Any two 
long diagonals divide the hexagon into 
two triangles and two quadrilaterals.  
 
We are given a convex hexagon with the 
property that the division into pieces by 
any two long diagonals always yields two 
isosceles triangles with sides of the 
hexagon as bases. Show that such a 
hexagon must have a circumcircle. 
 
Solution. Since any two opposing 
isosceles triangles (such as ABP and DEP) 
have a common angle at their vertices, 
they must be similar, and their bases 
therefore parallel. The angle bisector in 
their common vertex is therefore also the 
common altitude. 
 
If all three diagonals of the hexagon 
intersect at M, this point is also a common 
point of all angle bisectors. It must 
therefore be the same distance from A to B, 
as it lies on the bisector of AB, but the 
same holds for B and C, C and D, and so 
on. This point is therefore equidistant 
from all corners of the hexagon, and is 
therefore the mid-point of the 
circumcircle of the hexagon. 
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If the diagonals of the hexagon do not 
have a common point, they form a triangle. 
The angle bisectors have a common point, 
namely the incenter of this triangle, which 
we again call M. The same holds for this 
point M as in the previous situation, and 
we once again have established the 
existence of a circumcircle of the hexagon, 
as claimed. 
 
Example 6 (National Competition: May 
1st, 2015) A police emergency number is a 
positive integer that ends with the digits 

133 in decimal representation. Prove 
that every police emergency number 
has a prime factor larger than 7.  
 
(In Austria, 133 is the emergency 
number of the police.) 
 
Solution. Let n=1000k+133 be a police 
emergency number and assume that all 
its prime divisors are at most 7. It is 
clear from the last digit that n is odd 
and that n is not divisible by 5, so 
1000k+133 = 3a7b for suitable integers 
a,b≥0. Thus, 3a7b≡ 133 (mod 1000). 
 
This also implies 3a7b≡133≡ 5 (mod 8). 
We know that 3a is congruent to 1 or 3 
modulo 8 and 7b is congruent to 1 or 7 
modulo 8. In order for the product 3a7b  
to be congruent to 5 modulo 8, 3a must 
therefore be congruent to 3 and 7b must 
be congruent to 7. Therefore, we can 
conclude that a and b are both odd. 
 
We also have 3a7b≡133≡ 3 (mod 5). As 
a and b are odd, 3a and 7b are each 
congruent to 3 or 2 modulo 5. Neither 
32, nor 3·2 is congruent to 3 modulo 5, 
a contradiction. 
 
Example 7 (National Competition: 
April 30th, 2016) Consider 2016 points 
arranged on a circle. We are allowed to 
jump ahead by 2 or 3 points in 
clockwise direction. What is the 
minimum number of jumps required to 
visit all points and return to the starting 
point? 
 
Solution. Clearly it takes at least 2016 
jumps to visit all points. It is 
impossible to use only jumps of length 
2 or only jumps of length 3 because this 
would confine us to a single residue 
class modulo 2 or 3 respectively. 
 
If the problem could be solved with 
2016 jumps, the total distance covered 
by these jumps would be strictly 
between 2·2016 and 3·2016 which 
makes a return to the original point 
impossible. Therefore, at least 2017 
jumped are required. 
 
This is indeed possible, for example 
with the following sequence of points 
on the circle 
 
0,3,6,…,2013,2015, 2,5,…,2012,2014, 
1,4,…, 2011, 2013,0. 
 
                            (continued on page 4) 
 
 



Mathematical Excalibur, Vol. 22, No. 2, Nov. 18 – Jan. 19 Page 3

 
Problem Corner 
 
We welcome readers to submit their 
solutions to the problems posed below 
for publication consideration.  The 
solutions should be preceded by the 
solver’s name, home (or email) address 
and school affiliation.  Please send 
submissions to Dr. Kin Y. Li, 
Department of Mathematics, The Hong 
Kong University of Science & 
Technology, Clear Water Bay, Kowloon, 
Hong Kong.  The deadline for sending 
solutions is February 15, 2019. 
  
Problem 526. Let a1=b1=c1=1, a2=b2= 
c2=3 and for n≥3, an=4an-1 –an-2,  
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Prove that an=bn=cn for all n=1,2,3,…. 
 
Problem 527. Let points O and H be 
the circumcenter and orthocenter of 
acute ∆ABC. Let D be the midpoint of 
side BC. Let E be the point on the angle 
bisector of ∠BAC such that AE⊥HE. 
Let F be the point such that AEHF is a 
rectangle. Prove that points D, E, F are 
collinear. 
 
Problem 528. Determine all positive 
integers m satisfying the condition that 
there exists a unique positive integer n 
such that there exists a rectangle which 
can be decomposed into n congruent 
squares and can also be decomposed 
into n+m congruent squares. 
 
Problem 529.  Determine all ordered 
triples (x,y,n) of positive integers 
satisfying the equation xn+2n+1=yn+1 
with x is odd and the greatest common 
divisor of x and n+1 is 1.  
 
Problem 530. A square can be 
decomposed into 4 rectangles with 12 
edges. If square ABCD is decomposed 
into 2005 convex polygons with 
degrees of A, B, C, D at least 2 and 
degrees of all other vertices at least 3, 
then determine the maximum number 
of edges in the decomposition. 
  

***************** 
Solutions 

**************** 
 
Problem 521. Given 20 points in space 
so that no three of them are collinear, 
prove that the number of planes 
determined by these points is not equal 
to 1111. 
 

Solution. CHUI Tsz Fung (Ma Tau 

Chung Government Primary School), 
Eren KIZILDAG (MIT), LEUNG Hei 
Chun and Toshihiro SHIMIZU 
(Kawasaki, Japan). 
 
Assume the number of planes is 1111. The 
20 points would define (20·19·18)/3! = 
1140 planes so that 1140-1111=29 triplets 
of points lie in the planes already 
determined by other triplets. If one of the 
planes contain 7 or more points, then there 
are (7·6·5)/3! = 35 triplets of points in this 
plane and the number of triplets is greater 
than the number of planes by at least 
35-1=34. So the greatest possible number 
of planes is 1140-34=1105. Clearly, this 
cannot happen if there are 1111 planes.  
 
So each plane can contain at most 6 of the 
points. Let a, b, c be the number of planes 
containing 4, 5, 6 points respectively. 
When counting triplets, in cases k=4,5,6, 
we consider each plane containing k 
points k(k-1)(k-2)/3! = 4, 10, 20 times, 
which are 3, 9, 19 times too many, 
respectively. So the number of planes 
satisfies 1140-3a-9b-19c = 1111. Hence 
3a+9b+19c=29. However, there are no 
nonnegative integers a,b,c satisfying 
3a+9b+19c=29. So we arrive at a 
contradiction.  
 
Other commended solvers: ZHANG 
Yupei (HKUST). 
 

Problem 522. Determine all functions 
f:ℝ→ℝ such that for all real x and y, 
 
 (x-2) f(y) + f (y + 2f(x)) =  f (x + y f(x)). 
 
Solution. CHUI Tsz Fung (Ma Tau 
Chung Government Primary School),  
Eren KIZILDAG (MIT), Akash Singha 
ROY (West Bengal, India), Ioannis D. 
SFIKAS (Athens, Greece), George 
SHEN and Toshihiro SHIMIZU 
(Kawasaki, Japan). 
 
We will refer to the given equation as (*). 
In case f(0)=0, setting x=0 in (*), we get 
f(y)=0 for all y. In case f(0)≠0, setting y=0, 
(*) becomes (x-2)f(0)+f(2f(x)) = f(x) for 
all real x. If f(x)=f(x’), then x=x’ and so f is 
injective.  
 
Next, putting x=2 into (*), we get 
f(y+2f(2)) = f(2+yf(2)) for all real y. Since 
f is injective, we get y+2f(2) = 2+yf(2) for 
all real y. Setting y=0, we get f(2)=1. Since 
f is injective, f(3)≠1. Setting x=3 and 
y=3/(1-f(3)) (which is y=3+yf(3)) into (*), 
we get f(y+2f(3))=0. So f has a root at 
r=y+f(3). Next, setting y=r in (*), we get 
f(r+2f(x))=f(x+rf(x)) for all real x. Since f 

is injective, we get r+2f(x) = x+rf(x) for 
all real x.  
 
Now due to f(2)=1≠0, r≠2. So 
f(x)=(x-r)/(2-r). Finally, substituting 
f(x) by (x-r)/(2-r) we get r=1 so that 
f(x)=x-1.  As a result, it is easy to 
check (*) has the two solutions f(x)=0 
and f(x)=x-1. 
 
Other commended solvers: Alex Kin 
Chit O (G.T. (Ellen Yeung) College). 
 
Problem 523. Find all positive integers 
n for which there exists a polynomial 
P(x) with integer coefficients such that 
P(d) = (n/d)2 for each positive divisor d 
of n. 
 
Solution. CHUI Tsz Fung (Ma Tau 
Chung Government Primary School), 
Eren KIZILDAG (MIT), LEUNG 
Hei Chun, Toshihiro SHIMIZU 
(Kawasaki, Japan) and ZHANG 
Yupei (HKUST). 
 
For n=1, let P(x)=x, then P(1)=1 
satisfies the condition. If n is a prime, 
then its only positive divisors are 1 and 
n and the conditions on P is P(1)=n2 
and P(n)=1. We can satisfy this with 
P(x)=n2+(n+1)(1-x).  
 
Next we consider n=km is not prime 
with k,m>1. We have conditions 
P(1)=n2, P(k)=m2, P(m)=k2 and P(n)=1. 
For arbitrary integers a, b, by factoring, 
we see P(a)-P(b) is divisible by a-b. 
So n-k=k(m-1) divides P(n)-P(k) = 
1-m2 = (1-m)(1+m). This leads to k 
divides m+1. Similarly, n-m divides 
P(n)-P(m) and so m(k-1) divides 
(1-k)(1+k) and m divides k+1. Hence, 
km divides (k+1)(m+1) and it also 
divides (k+1)(m+1)-km = k+m+1. We 
must have km≤k+m+1, which implies 
that km-k-m+1≤2 or (k-1)(m-1)≤2. 
We may assume k≤m. Then the only 
possible case is k=2 and m=3 so that 
n=6. 
 
For n=6, we will find a polynomial P 
such that P(1)=36, P(2)=9, P(3)=4 and 
P(6)=1. We can apply the Lagrange 
interpolation formula to get P(x) = 
1−(x-6)(1+(x-3)(2x-5)), which can be 
easily checked to satisfy P(1)=36, 
P(2)=9, P(3)=4 and P(6)=1. 
 
Other commended solvers: Akash 
Singha ROY (West Bengal, India).  
 
Problem 524.  (proposed by Andrew 
WU, St. Albans School, Mc Lean, VA, 
USA) In ∆ABC with centroid G, M 
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and N are the midpoints of AB and AC, 
and the tangents from M and N to the 
circumcircle of ∆AMN meet BC at R 
and S, respectively. Point X lies on side 
BC satisfying ∠CAG = ∠BAX. Show 
that GX is the radical axis of the 
circumcircles of ∆BMS and ∆CNR. 
 
Solution. By Proposer. 
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Observe that BN is the radical axis of 
the circumcircles of ∆ANM and 
∆CNR. To prove this, we will show 
BM·BA=BR·BC or equivalently that 
AMRC is a cyclic quadrilateral. By the 
tangency condition, we have ∠AMR = 
180º-∠ANM=180º-∠ACR, so AMRC 
is cyclic, as desired. Similarly, we have 
CM is the radical axis of the 
circumcircles of ∆ANM and ∆BMS. 
Thus, by the radical center theorem, 
BN, CM and the radical axis of the 
circumcircles of ∆BMS and ∆CNR 
concur. This implies the centroid G lies 
on the radical axis.  
 

Next, by properties of symmedians, we 
get lines MR, AX, NS concur at some 
point T. Suppose lines AX and MN 
meet at Y. Then by similar triangles, we 
have RX/XS=MY/YN=BX/XC due to 
the facts that ∆TRS∼∆TMN and 
∆AMN∼∆ABC.  
 

Thus, it follows that XR·XC=XS·XB. 
So X has equal power with respect to 
the circumcircles of ∆BMS and ∆CNR. 
Then line GX is the radical axis of 
∆BMS and ∆CNR. 
 

Other commended solvers: CHUI Tsz 
Fung (Ma Tau Chung Government 
Primary School), Andrea FANCHINI 
(Cantù, Italy), LEUNG Hei Chun and 
Toshihiro SHIMIZU (Kawasaki, 
Japan) and ZHANG Yupei (HKUST).  
 
Problem 525. Find all positive integer 
n such that n(n+2)(n+4) has at most 15 
positive divisors. 
 
Solution. CHUI Tsz Fung (Ma Tau 
Chung Government Primary School), 

Ioan Viorel CODREANU (Satulung, 
Maramures, Romania), Eren KIZILDAG 
(MIT), LEUNG Hei Chun, Ioannis D. 
SFIKAS (Athens, Greece), Toshihiro 
SHIMIZU (Kawasaki, Japan) and 
ZHANG Yupei (HKUST). 
 
Let an=n(n+2)(n+4) and let bn be the 
number of positive divisors of an. The 
values of b1 to b10 are 4, 10, 8, 14, 12, 24, 
12, 28, 12, 40. Next, we recall if a positive 
integer m has prime factorization 

je
j

e pp 1
1 , then m has (e1+1)⋯(ej+1) 

positive divisors. If m divides a positive 
integer M, then M has at least as many 
divisors as m.  
 
Let n≥11. If n is even, say n=2k, then 
an=23k(k+1)(k+2). At least one of the 
numbers k, k+1, k+2 is divisible by 2 and 
exactly one of them is divisible by 3. 
Since k≥6, the numbers k, k+1, k+2 
cannot all be powers of 2 or 3. So 
k(k+1)(k+2) has a prime divisor p not 
equal to 2 or 3. Hence, 243p divides an and 
this implies that an has at least 5·2·2 =20 
positive divisors. 
 
Let n≥11 be odd. Then the numbers n and 
n+2 are relativity prime, as are n+2 and 
n+4 and also n and n+4. One of these three 
numbers is divisible by 3. This number 
has at least one other prime divisor p or 
else is a power of 3. In the latter case it is 
divisible by 33 since n≥11. Let q and r be 
prime divisors of the other two numbers. 
In the first case the number an is divisible 
by 3pqr. The number n, n+2, n+4 are 
relatively prime, so 3, p, q, r are relatively 
prime. This implies that an has at least 
2·2·2·2 =16 divisors. In the second case an 
is divisible by 33qr. The primes 3, q, r are 
again distinct. So an has at least 4·2·2=16 
divisors. 
 

The number an has at most 15 positive 
divisors only for n=1, 2, 3, 4, 5, 7, 9. 
 
Other commended solvers: Christos 
ALVANOS (Mandoulides, Thessaloniki, 
Greece), Alex Kin Chit O (G.T. (Ellen 
Yeung) College) and Akash Singha ROY 
(West Bengal, India). 
  

 
 

Olympiad Corner 
 
                      (Continued from page 1) 
 
Problem G1. (cont.) Prove that the 
circumcenter of the triangle ADM is the 
reflection of O across the line AD. 

Problem N1. Determine all pairs (m,n) 
of positive integers such that  
 

2m = 7n2+1. 
 

 
 
Austrian Math Problems 
 
                   (Continued from page 2)           
 
Example 8   (National Competition: 
April 30th, 2017) Anna and Berta play a 
game in which they take turns in 
removing marbles from a table. Anna 
takes the first turn. When at the 
beginning of a turn there are n≥1 
marbles on the table, then the player 
whose turn it is removes k marbles, 
where k≥1 either is an even number 
with k≤n/2 or an odd number with 
n/2≤k≤n. A player wins the game if 
she removes the last marble from the 
table. Find the smallest N≥100,000 
such that Berta can enforce a victory if 
there are exactly N marbles on the table 
in the beginning. 
 
Solution. We claim that the losing 
situations are those with exactly 
n=2a-2 marbles left on the table for all 
integers a≥2. All other situation are 
winning situations. 
 
For n=1, the player wins by taking the 
single remaining marble. For n=2, the 
only possible move is to take k=1 
marbles and the opponent wins in the 
next move. For n≥3, (1) if n is odd, the 
player takes all n marbles and wins; (2) 
if n is even, but not of the form 2a-2, 
then n lies between two other numbers 
of that form, so there is a unique b with 
2b-2<n<2b+1-2. From n≥3, we get 
b≥2. So all 3 parts of the inequalities 
are even and so 2b≤n≤2b+1-4. By the 
induction hypothesis, we know 2b-2 is 
a losing situation. Taking k = n-(2b-2) 
≤ n/2 marbles, we leave it to the 
opponent; (3) if  n is even of the form 
2a-2, the player cannot leave a losing 
situation with 2b-2 marbles to the 
opponent (where b<a holds due to at 
least 1 marble must be removed and 
b≥2 holds as after a legal move 
starting from an even n, at least 1 
marble remains). The player would 
then remove k=2a-2b marbles. As b≥2, 
k is even and greater than n/2 due to k≥ 
2a-1>2a-1 -1= n/2, which is impossible.  
This means Berta can enforce a victory 
if and only if N is of the form 2a-2. The 
smallest number N≥100,000 of this 
form is N = 217-2 = 131,070. 
 

 


