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Olympiad Corner 
 
Below were the Day 2 problems of the 
Croatian Mathematical Olympiad 
which took place on May 6, 2018.  

 
Problem A2. determine all functions 

f:ℝ→ℝ such that  
 

f(xf(y))=(1−y)f(xy)+x2y2f(y) 
 

holds for all real numbers x and y. 
 

Problem C2. Let n be a positive 
integer. Points A1, A2, …,An are located 
on the inside of a circle, and points B1, 
B2, …,Bn are on the circle, so that the 
lines A1B1, A2B2, …, AnBn are mutually 
disjoint. A grasshopper can jump from 
point Ai to point Aj (for i,j∈{1,…,n}, 
i≠j) if and only if the lines AiAj does 
not go through any of the inner points 
of the lines A1B1, A2B2, …, AnBn. 
 
Problem G2. Let ABC be an 
acute-angled triangle such that |AB| < 
|AC|. Point D is the midpoint of the 
shorter arc BC of the circumcircle of 
the triangle ABC. Point I is the incenter 
of the triangle ABC, and point J is the 
reflection of I across the line BC.  

 
                  
                                 (continued on page 4)                    

Sum of Digits of Positive Integers 
Pedro Pantoja, Natal/RN, Brazil 

  
    In this short article we will explore 
some types of problems in number 
theory about the sum of digits of a 
positive integer. 
 
    Throughout this article, S(a) will 
denote the sum of the digits of a positive 
integer a. For example S(12)=1+2=3, 
S(349)=3+4+9=16. Let c(n,m) denote 
the total number of carries, which arises 
when adding a and b, for example 
c(100,4)=0, c(23,17)=1, c(88,99)=2. 
 
Proposition 1. For positive integer a, we 
have 

    i) S(a)≤a; 
   ii) S(a)≡a (mod 9); 

  iii) if a is even, then S(a+1)-S(a)=1; 
  iv) S(a+b)=S(a)+S(b)−9c(a,b),        

       in particular, S(a+b)≤S(a)+S(b); 

   v) S(ab)≤min{aS(b),bS(a)}; 

  vi) S(ab)≤S(a)S(b); 

 vii) S(a)≤9([log a]+1). 
 
Proof.  i) and ii) are obvious.  
 
iii) If a is even, then S(a+1)−S(a)=1. In 
fact, a and a+1 differ only in the unit 
digit, which for a will be 0, 2, 4, 6 or 8 
and for a+1 will be, respectively, 1, 3, 5, 
7 or 9. 
 
iv) We proceed by induction on the 
maximal number of digits k of b and a. 
If both b and a are single digit numbers, 
then we have just two cases. If b+a<10, 
then we have nocarries and clearly 
S(b+a)=b+a=S(b)+S(a). If on the other 

hand, b+a=10+k≥10, then 
 
        S(b+a) = 1+k = 1+(b+a−10) 
                     =  S(b)+S(a)-9. 
 
Assume that the claim holds for all pairs 
with at most k digits each. Let  
 
    b = b1+n·10k+1  and  a = a1+n·10k+1, 
 
where b1 and a1 are at most k digit 
numbers.  If  there  is  no  carry   at   the    
 

     
k+1st digit, then c(b,a)=c(b1,a1) and    
thus     
 
   S(b+a) = S(b1+a1) + m + n 
               = S(b1)+m+S(a1)+n−9c(n1,m1) 
               = S(b)+S(a)−9c(b,a). 
 
If there is a carry, then c(n,a) = 1 + 
c(n1,ma1) and thus 
 
        S(b+a) = S(b1+a1)+m+n−9 
     = S(b1)+m+S(a1)+n−9(c(b1,a1)+1) 
     = S(b)+S(a)−9c(b,a). 
 
This finishes the induction and we are 
done. 
 
v) Because of symmetry, in order to 
prove v), it suffices to prove that S(ab) 

≤ aS(b). The last inequality follows by 
applying the subadditivity (iv) property 

repeatedly. Indeed, S(2b)=S(b+b)≤S(b) 
+S(b) = 2S(b). After a steps we obtain 

    S(ab) = S(b+⋯+b) 

             ≤ S(b)+⋯+S(b) = aS(b). 
 
vi) and vii) Left as exercises for the 
reader. 
 
   For applications, we provide 
 
Example 1: Find all positive integers 
with n ≤ 1000 such that n = (S(n))3. 
 
Solution: The perfect cube numbers 
smaller than 1000 are 1, 8, 27, 64, 125, 
216, 343, 512, 729. From these numbers 
the only one that satifies the conditions 
of the problem is n = 512. 
 
Example 2: (MAIO-2012) Evaluate  
              
     S(1) − S(2) + S(3) − S(4) + ⋯  
                        + S(2011) − S(2012). 
 
Solution: The problem becomes trivial 
using Proposition 1, item iii). We have 
S(3)−S(2)=1, S(5)−S(4) = 1, …, S(2011) 
− S(2010) = 1 and S(1) = 1, S(2012) = 5. 
Therefore, S(1) − S(2) + S(3) − S(4) + ⋯ 
+ S(2011) − S(2012) =1+1005−5 =1001.  
 

                                    (continued on page 2) 

 
  Editors: 高 子 眉 (KO Tsz-Mei)  
 梁 達 榮 (LEUNG Tat-Wing)  
 李 健 賢 (LI Kin-Yin), Dept. of Math., HKUST 
 吳 鏡 波 (NG Keng-Po Roger), ITC, HKPU 

Artist: 楊 秀 英 (YEUNG Sau-Ying Camille), MFA, CU 
 

Acknowledgment:  Thanks to Sindy Ting, Math. Dept., 
HKUST for general assistance. 

 
On-line:  http://www.math.ust.hk/excalibur/ 
 
The editors welcome contributions from all teachers and 
students.  With your submission, please include your name, 
address, school, email, telephone and fax numbers (if 
available).  Electronic submissions, especially in MS Word, 
are encouraged.  The deadline for receiving material for the 
next issue is May 25, 2019. 
 

For individual subscription for the next five issues for the 
18-19 academic year, send us five stamped self-addressed 
envelopes.  Send all correspondence to: 
 
Dr. Kin-Yin LI, Math Dept., Hong Kong Univ. of Science 
and Technology, Clear Water Bay, Kowloon, Hong Kong 

Fax: (852) 2358 1643 
Email: makyli@ust.hk 

 

© Department of Mathematics, The Hong Kong 
University of Science and Technology 

 



Mathematical Excalibur, Vol. 22, No. 3, Feb. 19 – Apr. 19 Page 2

 
Example 3: (Nordic Contest 1996) 
Show that there exists an integer 
divisible by 1996 such that the sum of its 
decimal digits is 1996. 
 
Solution. We affirm that the number   
m = 199619961996…199639923992 
satisfies the conditions of the statement. 
Note that S(m)=25·78 +2·23=1996. On 
the other hand, m is divisible by 1996, 
since m equals  
 
 1996·100010001000…1000200002. 
 
Example 4: Find S(S(S(S(20182018)))). 
 
Solution: Using proposition 1, item vii) 
several times we have 
 
   S(20182018)≤9([2018 log 2018]+1) 
                     <60030, 
 
    S(S(20182018))≤9([log 60030]+1) 
                           <45, 
 
  S(S(S(20182018)))≤9([log 45]+1) <18. 
 
On the other hand, 20182018 ≡ 22018 = 
(23)672·22 ≡ 4 (mod 9). Hence,  
 
         S(S(S(20182018))) = 4 or 13.  
 
So S(S(S(S(20182018)))) = 4. 
 
Example 5: Prove that S(n)+S(n2)+S(n3) 
is a perfect square for infinitely many 
positive integers n that are not divisible 
by 10. 
 
Solution: Let us prove that the 
numbers of the form 110

2

 mn  
satisfy the problem. The result follows 
immediately because there are 
infinitely many number of this form. 
Firstly, S(n)=9m2 and  
 

01...9800...99110210
2222  mmn  

 
where there are m2−1 9’s and 0’s. Then 
S(n2)=9m2. Similarly,  
 
       S(n3)=99…9700…0299…9, 
 
where there are m2−1 9’s and 0’s and 
m2 9’s at the end. Then S(n3)=18m2.  
Finally, S(n)+S(n2)+S(n3)=36m2. 
 
Remark 1: The numbers of the 
previous problem are registered in 
On-Line Encyclopedia of Integer 
Sequences (OEIS) A153185. Some 
examples of such numbers: 9, 18, 45, 
90, 171, 180, 207, 279, 297, 396, 414, 
450, 459, …. 
 

Remark 2: Notice that sometimes 
mathematical intuition deceives us. That 
is, the nine numbers 1, 11, 111, …, 111…1 
satisfy S(n2) = (S(n))2. Unfortunately, the 
next number in this family is  
 
  11111111112 = 1234567900987654321. 
 
So S(1111111111) = 10, but S(1111111112) 
= 82. The smallest positive integer such 
that S(n) = 10 and S(n2) = 100 is n = 
1101111211. 
 
Example 6: We say that a superstitious 
number is equal to 13 times a sum of its 
digits. Find all superstitious numbers. 
 
Solution: Obviously there is no 
superstitious number with one digit. If a 
two digit number ab is superstitious, then 
10a+b=13(a+b), that is 3a+12b=0, which 
is impossible. 
 
If a three-digit number abc is superstitious, 
we would have 100a+10b+c=13(a+b+c). 
that is 29a=b+4c. The maximum possible 
value for b+4c is 45 (for b=c=9). So a 
must be 1 and the equation 29=b+4c has 
solutions (b,c) = (1,7),(5,6), and (9,5). The 
numbers 117, 156 and 195 are the only 
superstitious numbers with three digits. 
 
If a four-digit number abcd is superstitious, 
it would result in 1000a+100b+10c+d 
=13(a+b+c+d). As the number on the left 
is at least 1000 and the number on the 
right is at most 13·36=468, there is no 
superstitious numbers of four digits. 
Finally, there is no superstitious number 
with more than four digits, since each 
added digit contributes at least 1,000 to 
the number on the left, while the one on 
the right contributes at most 13·9=117. So 
the only superstitious numbers are 117, 
156 and 195. 
 
Example 7: (Romanian Team Selection 
Test 2002) Let a, b > 0. Prove that the 
sequence S([an+b]) contains a constant 
subsequence. 
 
Solution. For any positive integer k, let nk 
equals [(10k+a−b)/b]. Then 

       b
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It follows that 10k=[ank+b]≤10k+b.  
 

If k is sufficiently large, that is 10k−1>b, 
it follows from above that 

knS is one 
plus the sum of the digits of one of the 
numbers t in the set {0,1,…,[b]}. Since 
k takes infinitely many values and the 
set of the numbers t is finite, it follows 
that for infinitely many k, the sum of 
digits of numbers [ank+b] is the same. 
 
Example 8: (2016 IMO Shortlisted 
Problem) Find all polynomials P(x) 
with integer coefficients such that for 
any positive integer n≥2016, the 
integer P(n) is positive and  
 
                 S(P(n)) = P(S(n)).          (*) 
 
Solution: Let  
 
 .)( 0

1
1 axaxaxP d

d
d

d  
   

 
Clearly ad > 0. There exists an integer 
m>1 such that |ai|<10m for all 0 ≤i ≤d. 
Consider n=9·10k for a sufficiently 
large integer k in (*). If there exists an 
index 0 ≤ i ≤ d−1 such that ai < 0, then 
all digits of P(n) in positions from 
10ik+m+1 to 10(i+1)k−1 are all 9’s Hence, 
we have S(P(n))>9(k−m−1). On the 
other hand, P(S(n))=P(9) is a fixed 
constant. Therefore, (*) cannot hold for 
large k. This shows ai>0 and for all 0≤i 
≤ d−1. Hence, P(n) is an integer 
formed by the nonnegative integers 
ad9

d, ad−19
d−1,…, a0 by inserting some 

zeros in between. 
 
This yields  
 
S(P(n))=S(ad9

d)+S(ad−19
d−1)+⋯+S(a0). 

 
Combining with (*), we have  
 
 S(ad9

d)+S(ad−19
d−1)+⋯+S(a0) = P(9) 

             = ad9
d+ad−19

d−1+⋯+a0. 
 
As S(m)≤m for any positive integer m, 
with equality when 1≤m≤9, this 
forces each ai9

i to be a positive integer 
between 1 and 9. In particular, this 
shows ai=0 for i>2 and hence d≤1. 
Also, we have a1≤1 and a0≤9. If a1=1 
and 1≤a0≤9, we take n=10k+(10−a0) 
for sufficiently large k in (*). This 
yields a contradiction. Since  
 
   S(P(n)) = S(10k+10) = 2 
                ≠11 = P(11−a0) = P(S(n)). 
 
The zero polynomial is also rejected 
since P(n) is positive for large n. The 
remaining candidates are P(x)=x or 
P(x)=a0 where 1≤a0≤9, all of which 
satisfy (*), and hence are the only 
solutions. 
 
                            (continued on page 4) 
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Problem Corner 
 
We welcome readers to submit their 
solutions to the problems posed below 
for publication consideration.  The 
solutions should be preceded by the 
solver’s name, home (or email) address 
and school affiliation.  Please send 
submissions to Dr. Kin Y. Li, 
Department of Mathematics, The Hong 
Kong University of Science & 
Technology, Clear Water Bay, Kowloon, 
Hong Kong.  The deadline for sending 
solutions is May 25, 2019. 
  
Problem 531. BCED is a convex 
quadrilateral such that ∠BDC =∠CEB 
= 90º and BE intersects CD at A. Let F, 
G be the midpoints of sides DE, BC 
respectively. Let O be the circumcenter 
of ∆BAC. Prove that lines AO and FG 
are parallel.  
 
Problem 532. Prove that there does not 
exist a function f:(0,+∞)→(0,+ ∞) such 
that for all x,y>0,  
 
             f 2(x) ≥ f(x+y)(f(x)+y). 
 
Problem 533. Let ℤ and ℕ be the sets 
of all integers and all positive integers 
respectively. Let r, s ∈ ℕ. Prove that 
there are exactly (r+1)s+1−rs+1 functions 
g:[1,s]∩ℕ→ [-r,r]∩ℤ such that for all 
x,y∈[1,s]∩ℕ, we have |g(x)−g(y)|≤r. 
 
Problem 534.  Prove that for any two 
positive integers m and n, there exists a 
positive integer k such that 2k -m has at 
least n distinct prime divisors. 
 
Problem 535. Determine all integers 
n>4 such that it is possible to color the 
vertices of a regular n-sided polygon 
using at most 6 colors such that any 5 
consecutive vertices have distinct 
colors.    
  

***************** 
Solutions 

**************** 
 
Problem 526. Let a1=b1=c1=1, a2=b2= 
c2=3 and for n≥3, an=4an-1 –an-2,  

 .232,
2 2
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Prove that an=bn=cn for all n =1,2,3,…. 
 
Solution. Angel Gerardo Napa 
BERNUY (PUCP University, Lima, 
Peru), CHUI Tsz Fung (Ma Tau 
Chung Government Primary School), 
DBS Maths Solving Team (Diocesan 
Boy’s School), Prithwijit DE 

(HBCSE, Mumbai, India), O Long Kin 
Oscar (St. Joseph’s College), TAM Choi 
Nang Julian (Yan Chai Hospital Law 
Chan Chor Si College), Duy Quan 
TRAN (University of Medicine and 
Pharmacy at Ho Chi Minh City, Vietnam) 
and Bruce XU (West Island School). 
 
The cases n = 1,2 can easily be checked. 
For n≥3, bnbn-2 = bn-1

2+2 implies bn+1bn-1 

= bn
2+2. Subtracting these and factoring, 

we get (bn+1-bn−1)/bn=(bn-bn−2)/bn−1. Then  
 
          (bn-bn−2)/bn−1= (bn−1-bn−3)/bn−2  
 

                           = ⋯ = (b3−b1)/b2 = 4. 
 
Hence, bn = 4bn−1− bn−2 for n ≥ 3. Since 
a1=b1 and a2=b2, an=bn for all n = 1,2,3,…. 
Next, from 

232 2
11   nnn ccc , 

we can see cn is strictly increasing and for 
n≥2, (cn−2cn−1)

2 = 3cn−1
2−2. Then cn

2 − 
4cncn−1 + cn−1

2  = −2 and cn+1
2−4cn+1cn + cn

2  

= −2. Subtracting these and factoring, we 
get (cn+1−cn−1)(cn+1−4cn+cn−1) = 0. As cn+1 

> cn−1, we get cn+1=4cn-cn−1 for n≥2. So 
an=bn=cn for all n = 1,2,3,…. 
 
Other commended solvers: AISINGIUR 
To To, Alvin LUKE (Portland, Oregon, 
USA), Corneliu MĂNESCU-AVRAM 
(Ploieşti, Romania), Ioannis D. SFIKAS 
(Athens, Greece), Toshihiro SHIMIZU 
(Kawasaki, Japan), SO Tsz To (S.K.H. 
Lam Woo Memorial Secondary School), 
Nicuşor ZLOTA (“Traian Vuia” 
Technical College, Focşani, Romania), 
Titu ZVONARU (Comăneşti, Romania) 
and Neculai STANCIU (Buzău, 
Romania). 
 

Problem 527. Let points O and H be the 
circumcenter and orthocenter of acute 
∆ABC. Let D be the midpoint of side BC. 
Let E be the point on the angle bisector of 
∠BAC such that AE⊥HE. Let F be the 
point such that AEHF is a rectangle. Prove 
that points D, E, F are collinear. 
   
Solution. Alvin LUKE (Portland, Oregon, 
USA).  

        

O

A

B C

M

H
E

F

D

G

 

Connect AO, OD and extend OD to 
meet the circumcircle of ∆ABC at M. 
Then OD⊥BC and M bisects arc BC. 
Also, A, E, M are collinear. Observe 
AE, AF are internal and external 
bisectors of ∠BAC. So AE⊥AF.  
 
Since HE⊥AE and HF⊥AF, so AEHF 
is a rectangle. Hence, segments AH and 
EF bisect each other. Let AH and EF 
meet at G. Then AG=½AH= ½EF=EG. 
 
Also, OA=OM and OD || AH. So 
 
    ∠OAE=∠OME=∠EAG=∠GEA. 
 
So (*) EG || OA.  
 
Next, observe O and H are the 
circumcenter and the orthocenter of of 
∆ABC respectively. Since OD⊥BC, so 
OD=½AH=AG. Finally, connect DG. 
We see AODG is a parallelogram. So 
(**) DG || OA. Therefore, by (*) and 
(**), D, E, G, F are collinear. 
 
Other commended solvers: Angel 
Gerardo Napa BERNUY (PUCP 
University, Lima, Peru), CHUI Tsz 
Fung (Ma Tau Chung Government 
Primary School), DBS Maths Solving 
Team (Diocesan Boy’s School), 
Prithwijit DE (HBCSE, Mumbai, 
India), Andrea FANCHINI (Cantú, 
Italy), Jon GLIMMS, Corneliu 
MĂNESCU-AVRAM (Ploieşti, 
Romania), Apostolos MANOLOUDIS, 
George SHEN, Toshihiro SHIMIZU 
(Kawasaki, Japan), Mihai 
STOENESCU (Bischwiller, France), 
Titu ZVONARU (Comăneşti, 
Romania) and Neculai STANCIU 
(Buzău, Romania). 
 
Problem 528. Determine all positive 
integers m satisfying the condition that 
there exists a unique positive integer n 
such that there exists a rectangle which 
can be decomposed into n congruent 
squares and can also be decomposed 
into n+m congruent squares. 
 
Solution. Angel Gerardo Napa 
BERNUY (PUCP University, Lima, 
Peru), CHUI Tsz Fung (Ma Tau 
Chung Government Primary School) , 
and Toshihiro SHIMIZU (Kawasaki, 
Japan). 
 
Suppose rectangle ABCD can be 
decomposed into n+m unit squares and 
also into n squares with sides equal x. 
Let x = a/b with gcd(a,b) = 1. Then the 
area of rectangle ABCD is n+m as well 
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as n(a/b)2. Then from n+m = n(a/b)2, 
we can solve for n to get  
 

.
))((

2

22

2

baba

mb

ba

mb
n





  

        
Since gcd(b,a+b) = gcd(b,a−b) = 
gcd(a,b) = 1, so (a−b)(a+b) | m. Now 
a+b, a−b are of the same parity. If m is 
the product of positive integers i, j, k 
with j, k odd and greater than 1, then 
(a+b,a−b) = (j,k) or (jk,1) leading to 
n=i(j−k)2/4 or i(jk−1)2/4, contradicting 
the uniqueness of n. So m can have at 
most one odd factor greater than 1, i.e. 
m=2c or 2cp with p an odd prime.  
 
In case m=2c, for c=1,2, there is no n; 
for c=3, m=8 and (a,b)=(2,4), n=1;  for 
c≥4, (a+b,a−b)=(4,2) or (8,2) resulting 
in n = 2c-3 or 2c-4 contradicting the 
uniqueness of n.  
 
In case m=2cp, for c=0, m=p and 
(a+b,a-b) = (p,1), n = (p−1)2/4; for c = 
1, (a+b,a-b) = (p,1), n = (p-1)2/2; for c 
= 2, (a+b,a-b) = (p,1), n = (p-1)2; for 
c≥3, (a+b,a−b) = (4,2) or (p,1) 
contradict the uniqueness of n. 
 
So the only solutions are m = 8, p, 2p, 
4p, where p is an odd prime. 
 
Other commended solvers: Victor 
LEUNG Chi Shing and Charles 
POON Tsz Chung.  
 
Problem 529.  Determine all ordered 
triples (x,y,n) of positive integers 
satisfying the equation xn+2n+1 = yn+1 
with x is odd and the greatest common 
divisor of x and n+1 is 1.  
 
Solution. Alvin LUKE (Portland, 
Oregon, USA) and Toshihiro 
SHIMIZU (Kawasaki, Japan). 
 
When n=1, let y=t be an integer at least 
3 and x=t2−4 are solutions. When n≥2, 




 
n

k

knknnn yyyx
0

11 .2)2(2  

For any prime factor p of y-2, from 
above, we see x must be a multiple of p. 
As x is odd, p is also odd. As gcd(x,n+1) 
= 1, we see gcd(x,(n+1)2n) = 1. Then p 
is not a factor of (n+1)2n. Now 

 
 

 
n

k

n
n

k

nknk ynyS
0 0

).2(mod2)1(22  

Hence, p is not a factor of S. So we 
have gcd(y−2,S) = 1. So S=T n for some 
positive integer T. Since y is positive, y 
is at least 3.  
 

When n≥2, we have 
 
 
              yn  < S=T n < (y+2)n.           (*) 
 
 
So T = y+1. However, when y is even, S ≡ 
yn (mod 2) is even, but then S = (y+1)n is 
odd by (*). Similarly, when y is odd, S ≡ yn 
(mod 2) is odd, but then S=(y+1)n is even 
by (*). Again this leads to a contradiction. 
 
In conclusion, when integer n is at least 2, 
there are no solutions. So the only solution 
are x=t2−4, y=t, n=1, where integer t≥3.   
 
Other commended solvers: Ioannis D. 
SFIKAS (Athens, Greece).  
 
Problem 530. A square can be 
decomposed into 4 rectangles with 12 
edges. If square ABCD is decomposed 
into 2005 convex polygons with degrees 
of A, B, C, D at least 2 and degrees of all 
other vertices at least 3, then determine 
the maximum number of edges in the 
decomposition. 
 
Solution. CHUI Tsz Fung (Ma Tau 
Chung Government Primary School), 
DBS Maths Solving Team (Diocesan 
Boy’s School) and Toshihiro SHIMIZU 
(Kawasaki, Japan). 
 
Let v, e, f be the number of vertices, edges 
and faces used in decomposing the square 
respectively. By Euler’s formula, we have 
v−e+f = 1 (omitting the exterior of the 
square).  
 
Let d(V) be the number of edges 
connected to V. Let V be a vertex on the 
square other than A,B,C,D. Then d(V)≥3, 
which is the same as d(V)≤3d(V)−6.  
 
Now there are v−4 vertices not equal to A, 
B, C, D. The sum of the degrees of the v−4 
vertices other than A, B, C, D is 
2e−[d(A)+d(B)+d(C)+d(D)], which is at 
least 3(v−4). Since d(A), d(B), d(C), d(D) 
≥2, we get  
 
     2e−8≥2e−[d(A)+d(B)+d(C)+d(D)] 
           ≥3(v−4) = 3v−12.  
 
Since v−e+f = 1, 3e = 3v+3f−3 ≤ 2e+1+3f, 
which simplies to e ≤ 3f +1. 
 
For equality case, we can decompose the 
unit square into rectangles of size 1 by 
1/2005, which has 3×2005+1=6016 
edges. 
 

 

Olympiad Corner 
 
                   (Continued from page 1) 
 
 
Problem G2. (cont.) Line DJ 
intersects the circumcircle of the 
triangle ABC at the point E which lies 
on the shorter arc AB. Prove that 
|AI|=|IE| holds.  
 
Problem N2. Let n be a positive 
integer. Prove that there exists a 
positive integer k such that  
 

51k − 17 
 

is divisible by 2n. 
 

 
 

 
 
Sums of Digits … 
 
                   (Continued from page 2)           
 
   Next, we will provide some exercises 
for the readers. 
 
Problem 1: (Mexico 2018) Find all 
pairs of positive integers (a,b) with 
a>b which simultaneously satisfy the 
following two conditions  
 
          a | b+S(a)   and   b | a+S(b). 
 
Problem 2: (Lusophon 2018) 
Determine the smallest positive integer 
a such that there are infinitely many 
positive integer n for which you have 
S(n)−S(n+a) = 2018. 
 
Problem 3: (Cono Sur 2016) Find all n 
such that S(n)(S(n)−1) = n−1. 
 
Problem 4: (Iberoamerican 2014) Find 
the smallest positive integer k such that  
 
        S(k) = S(2k) = S(3k) = ⋯ 
            = S(2013k) = S(2014k). 
 
Problem 5: (OMCC 2010) Find all 
solutions of the equation n(S(n)−1) = 
2010. 
 
Problem 6: (Iberoamerican 2012) 
Show that for all positive integers n 
there are n consecutive positive 
integers such that none is divisible by 
the sum of their respective digits. 
 
 

 
 


