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Olympiad Corner 
 
Below were the Hong Kong (China) 
Mathematical Olympiad on December 
1, 2018.  

 
Problem 1. Given that a, b and c are 
positive real numbers such that 
ab+bc+ca≥1, prove that  

.
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Problem 2. Find the number of 
nonnegative integers k, 0≤k≤2188, 
and such that 2188!/(k!(2188-k)!) is 
divisible by 2188. 
 
Problem 3. The incircle of ∆ABC, 
with incenter I, meets BC, CA and AB 
at D, E, F respectively. The line EF 
cuts the lines BI, CI, BC and DI at 
points K, L, M and Q respectively. The 
line through the midpoint of CL and M 
meets CK at P.  
 
(a) Determine ∠BKC.  
(b) Show that the lines PQ and CL are 
parallel. 
 
Problem 4.  Find all integers n≥3 with 
the following property: there exist n 
distinct points on the plane such that 
each point is the circumcenter of a 
triangle formed by 3 of the points.             

Notes on IMO 2019  
Tat Wing LEUNG 

  
 Despite all its sham, drudgery 

and broken dreams, the Gifted Section 
of the Education Department (EDB), the 
Hong Kong Academy of Gifted 
Education (HKAGE), and our 
Committee (International Mathematical 
Olympiad Hong Kong Committee, 
IMOHKC) managed to send a team to 
the 60th International Mathematical 
Olympiad (IMO 2019). The competition 
was held from July 11 to July 22, 2019, 
in Bath, United Kingdom.  

 
        The team was composed as 
follows: Leader: Leung Tat Wing, 
Deputy Leader: Cesar Jose C. Jr. Alaban 
(CJ), Members: Bruce Changlong Xu, 
Daniel Weili Sheremeta, Harris Leung, 
Wan Lee, Nok To Omega Tong, Sui Kei 
Ho. A lady from EDB (Miriam Cheung) 
also went with us as an observer. 

 
       Let me briefly discuss the problems 
of the two contests.  
 
        Problem 1 was very interesting. It 
was initially selected as the easy algebra 
problem and later selected as the easy 
pair. Although it was most liked, it was 
also most hated. I supposed it was 
because some leaders thought the 
problem was simply too easy. By 
substituting suitable values (say a by 0 
and b by n+1 one quickly comes to the 
conclusion that the function is linear (or 
by Cauchy), and hence by using some 
initial values to get the answers. Some 
leaders first tried to replace the easy 
algebra by another easy problem (which 
was actually classified as a 
combinatorial problem), and later tried 
to add alternate option pairs to the 
option pairs that contained the easy 
algebra problem. I myself could not say 
if it was right or wrong, I just found it 
funny. Indeed the problem was selected 
using the approach as agreed, why tried 
to change it in the middle of the 
process? At the end of the day, totally 73 
students did  not  get  anything  in  this  

     
problem, and only slightly more than 
half (382 out of 621) scored full mark.  

 
       Problem 4 was an easy Diophantine 
equation. By putting small values of n, 
one quickly comes up with the solutions 
(1,1) and (3,2), the hard part is to show 
that there are no more. Many students 
lost partial marks while trying to 
compare values (or 2-adic valuations) of 
the two sides of the equation. As learned 
from leaders of stronger teams, I found 
they considered Legendre’s formula 
and/or the lifting exponent lemma rather 
common tools, although the lemma was 
not really necessary. So yes, do we need 
to ask our students to further enhance 
their toolkit? 
 
         Problem 5 was an ouroboros-type 
problem, namely part of the problem is 
relating to other part of itself. In this 
case we are given a sequence of heads 
and tails of n coins, the kth coin is 
flipped if there are exactly k heads in the 
sequence. The problem is not too hard, 
and given its “natural” condition, it is 
probably known. Indeed if the first coin 
is head, then basically we need to deal 
with the remaining sequence of length 
n-1, and the final step is to flip the first 
coin. If the last coin is a tail, then it will 
never be flipped, and we are basically 
dealing with the first n-1 coins.  
 
         If the first coin is a tail, and the last 
coin is a head, then we first deal with the 
middle n-2 coins. After that only one 
head remaining (at the end), then the 
first n-1 coins are flipped successively 
and all become heads, then starting from 
the end, each coin is flipped, until the 
first one and every coin becomes tail. 
Using these, we can make up recursive 
relations and get the answer relatively 
easy. Our team members, using their 
own ingenuity and persistence, 
managed to do the problem well. 
 

                                    (continued on page 4) 
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  Wilson’s Theorem 
 
             Kin Y. Li 
 

      In solving number theory problems, 
Fermat’s or Euler’s theorems as well as 
the Chinese remainder theorem are 
often applied. In this article, we will 
look at examples of number theory 
problems involving factorials. For this 
type of problems, Wilson’s theorem 
asserts that for every prime number p, 
we have (p-1)! ≡ -1 (mod p). Below 
are problems using Wilson’s theorem. 
 
Problem 1. Let p be an odd integer 
greater than 1. Prove that 
 
12ꞏ32 ꞏ52 ꞏ⋯(p-2)2 ≡ (-1)(p+1)/2 (mod p). 
 
Solution. By Wilson’s theorem, (p-1)! 
≡ -1 (mod p) when p is an odd prime. 
Also, we have i ≡ -(p-i) (mod p). 
Multiplying the cases i = 1, 3, ⋯, p-2, 
we get  
 
1ꞏ3⋯(p-2)≡(-1)(p−1)/2(p-1)(p-3)⋯2 
                                               (mod p). 
 
Multiplying both sides by 1ꞏ3⋯(p-2),  
we get  
 
12ꞏ32 ꞏ52 ꞏ⋯(p-2)2 ≡ (-1)(p−1)/2(p-1)!  
                             ≡ (-1)(p+1)/2 (mod p). 
 
Problem 2. Let p be a prime number 
and N = 1+2+3+⋯+(p-1) = (p-1)p /2. 
Prove that (p-1)! ≡ p-1 (mod N). 
 
Solution. Since p is prime, by Wilson’s 
theorem, (p-1)! ≡ -1 (mod p). Then 
there exists an integer m such that  
 
(*)   (p-1)!=mp-1=(m-1)p+(p-1).  
 
So (m-1)p = (p-1)!-(p-1) = (p-1)k, 
where k=(p-2)!-1 and p|(p-1)k. Since 
gcd(p,p-1)=1, so p|k. Let k=np, then  
 
(**)  (m-1)p=(p-1)pn,  
 
so m-1=n(p-1). Putting (**) into (*), 
we get  
 
(p-1)!=[n(p-1)+1] p-1=n(p-1)p+p-1 
          =2n[(p-1)p/2]+p-1=2nN+p-1. 
 
So (p-1)! ≡ p-1 (mod N). 
 
Problem 3. Determine all positive 
integers n having the property that 
there exists a permutation a1, a2, … , an  
of 0,1,2,…,n-1 such that when divided 
by n, the remainders of a1, a1a2, … , 
a1a2⋯an are distinct. 

 
Solution. When n is a prime number p, 
let a1=1 and other integers ai satisfy 

0≤ai≤p-1 and iai+1 ≡ i+1 (mod p) for i = 
2,⋯, p.  
 
      Then a1, a1a2, … , a1a2⋯an when 
divided by n have remainders 1,2,⋯, p. 
Also, from iai+1 ≡ i + 1 (mod p), we see 
ai+1-1 is the inverse of i. So a1, a2, … , an  
are distinct.  
 
When n = 1 or 4, the permutations (0), 
(1,3,2,0) satisfy the condition. When n>4 
is composite, if n = p2, let q = 2p < n. 
Otherwise n=pq with 1<p<q<n so that pq| 
(n-1)!.  
 
If the required permutation exists, then 
an=0 and a1a2⋯an-1=(n-1)!≡0 (mod n), 
which is a contradiction. (In fact, when 
n>4 is composite, n | (n-1)! and 3! ≡ -2 
(mod 4) so that the converse of Wilson’s 
theorem also hold. 
 
Problem 4. For integers n, q satisfying 
n≥5 and n≥q≥2, prove that [(n-1)!/q] is 
divisible by q-1. 
 
Solution. (1) If n>q, then (q-1)q | (n-1)!. 
Hence, (q-1) | [(n-1)!/q]. 
 
(2) If q=n and q is composite, then 
[(n-1)!/q]=(n-1)!/n. Since gcd(n-1,n)=1 
and q-1=(n-1) | (n-1)!. So q-1 divides 
[(n-1)!/q]. 
 
(3)  If q=n is prime, then by Wilson’s 
theorem, (n-1)! ≡-1 (mod n) so that 
(n-1)!+1=kn for some integer k. Then 
[(n-1)!/q]=k-1 and (k-1)n=(n-1)!+1-n 
so that k-1=((n-2)!-1)(n-1)/n is an 
integer. Since gcd(n-1,n)=1, so n  divides  
(n-2)!-1. Therefore, [(n-1)!/q]=k-1 is a 
multiple of n-1. 
 
Problem 5. Let P(x)=anxn+an-1xn-1+⋯+a1x 
+a0 , where a0, a1, ⋯, an are integers, an > 0 
and n≥2. Then prove that there exists a 
positive integer m such that P(m!) is a 
composite number. 
 
Solution. If a0=0, then m! | P(m!) and the 
conclusion follows.  
 
Next let S(x) = a0xn

 + a1xn-1 + ⋯ + an. 
Suppose a0≠0. By Wilson’s theorem, for 
every prime p and positive even integer k 
< p, we have 
 
     (k-1)!(p-k)! 
  ≡ (-1)k-1(p-k)!(p-k+1)(p-k+2)(p-1) 
   = -(p-1)! ≡ 1 (mod p). 
 
So (p-1)!≡-1 (mod p) and  
 
  ((k-1)!)n P((p-k)!)≡ S((k-1)!)  (mod p). 
 
So p | P((p-k)!) if and only if p | S((k-1)!). 
Take k > 2an+1. Then u = (k-1)!/an is an 

integer divisible by all primes not 
greater than k. 
 
Problem 6. If p and p+2 are both prime 
numbers, then we say they are twin 
primes. Show that if p and p+2 are twin 
primes, then 4(p-1)!+4+p is divisible 
by p(p+2). 
 
Solution. If p and p+2 are prime, then 
p>2 so that p and p+2 are odd. By 
Wilson’s theorem, (p-1)! ≡ -1 (mod p) 
and also (p+1)! ≡ -1 (mod p+2). Then 
we have  
 
          4(p-1)!+4+p ≡ 0 (mod p). 
Also 
 
        4(p-1)!+4 ≡ -p(p+1)p[(p-1)!+1]  
≡ -p[(p+1)!+2] ≡ - p (mod p+2), 
 
which is 4(p-1)!+4+p ≡ 0 (mod p+2). 
As gcd(p,p+2)=1, we get  4(p-1)!+4+p 
≡ 0 (mod p(p+2)).  
 
Problem 6. (Wolstenholme’s Theorem) 
Let p be a prime greater than or equal 
to 5. For positive integers m and n that 
are relatively prime and  
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Prove that p is a divisor of m and p2 is a 
divisor of  
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Solution. If integer k is not divisible by 
p, then there are integers a, b such that 
ak+bp = gcd(k,p) = 1. We say a is the 
inverse of k in mod p and denote a as 
k-1. We have 
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Since gcd((p-1)!, p) = 1, so p | m. Next, 
let S=(p-1)!(1+1/2+⋯+1/(p-1)). Then 
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where 2S, p and T are integers. Since 
gcd(p,2)=1, so p divides S. Due to p|m,  
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Problem Corner 
 
We welcome readers to submit their 
solutions to the problems posed below 
for publication consideration.  The 
solutions should be preceded by the 
solver’s name, home (or email) address 
and school affiliation.  Please send 
submissions to Dr. Kin Y. Li, 
Department of Mathematics, The Hong 
Kong University of Science & 
Technology, Clear Water Bay, Kowloon, 
Hong Kong.  The deadline for sending 
solutions is November 2, 2019. 
  
Problem 536. Determine whether 
there exists a function f : ℝℝ such 
that for all real x, we have f(x3+x) ≤ x 
≤  (f(x))3 + f(x). 
 
Problem 537. Distinct points A, B, C 
are on the unit circle  with center O 
inside ∆ABC. Suppose the feet of the 
perpendiculars from O to sides BC, CA, 
AB are D, E, F. Determine the largest 
value of OD+OE+OF.  
 
Problem 538. Determine all prime 
numbers p such that there exist integers 
a and b satisfying p=a2+b2 and a3+b3-4 
is divisible by p. 
 
Problem 539.  In an exam, there are 5 
multiple choice problems, each with 4 
distinct choices. For every problem, 
every one of the 2000 students is 
required to choose exactly 1 of the 4 
choices. Among the 2000 exam papers 
received, it is discovered that there 
exists a positive integer n such that 
among any n exam papers, there exist 4 
such that for every 2 of the exam 
papers, there are at most 3 problems 
having the same choices. Determine 
the least such n. 
 
Problem 540. Do there exist a positive 
integer k and a non-constant sequence 
a1, a2, a3, … of positive integers such 
that an=gcd(an+k, an+k+1) for all positive 
integer n? 
  

***************** 
Solutions 

**************** 
 
Problem 531. BCED is a convex 
quadrilateral such that ∠BDC =∠CEB 
= 90º and BE intersects CD at A. Let F, 
G be the midpoints of sides DE, BC 
respectively. Let O be the circumcenter 
of ∆BAC. Prove that lines AO and FG 
are parallel.  
 

Solution 1. Jon GLIMMS, Hei Chun 
LEUNG and Toshihiro SHIMIZU 
(Kawasaki, Japan). 

           

G CB

D
E

A

O
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Since ∠CAO = (180º-∠COA)/2 = 90º- 
∠COA/2 = 90º-∠CBA = 90º-∠CBE = 
90º-∠CDE = 90º-∠ADE, we have OA 
and DE are perpendicular. Also, since FG 
passes through the center G of the circle 
CEDG and midpoint F of chord DE, FG is 
perpendicular to DE. Thus, both AO, FG 
are perpendicular to DE. So lines AO and 
FG are parallel.  
 
Solution 2. Prithwijit DE (HBCSE, 
Mumbai, India). 
 
Let R be the radius of the circumcircle of 
triangle BAC. As ∠BAC>90º, BC is not 
the diameter of the circle ABC and 
therefore D and E are outside the circle 
ABC. Observe that EAꞏEB=EO2-R2 and 
DAꞏDC=DO2-R2. Thus 
 
   EO2-DO2=EAꞏEB-DAꞏDC 
                   =EA2-DA2+EAꞏAB-DAꞏDC 
                   =EA2-DA2. 
 
This implies OA⊥DE. Now FG⊥DE 
because G is the centre of the circle 
passing through B, C, E and D, and F is 
the midpoint of chord DE of this circle. 
Therefore, lines AO and FG are parallel. 
 
Other commended solvers: CHUI Tsz 
Fung, Andrea FANCHINI (Cantừ, Italy), 
Panagiotis N. KOUMANTOS (Athens, 
Greece), LAU Chung Man (Lee Kau Yan 
Memorial School), LW Maths Solving 
Team (SKH Lam Woo Memorial 
Secondary School), Jim MAN,   Corneliu 
MĂNESCU-AVRAM (Ploieşti, Romania) 
and Apostolis MANOLOUDIS. 
 

Problem 532. Prove that there does not 
exist a function f:(0,+∞)→(0,+ ∞) such 
that for all x,y>0,  
 
                f 2(x) ≥ f(x+y)(f(x)+y). 
   
Solution. Jon GLIMMS, Alvin LUKE 
(Portland, Oregon, USA) and Toshihiro 
SHIMIZU (Kawasaki, Japan), 
         
Assume such function exists. We have  
 

-y f(x+y)/f(y) ≥f(x+y)-f(x). 

Since the left hand side is negative, f 
must be strictly monotone decreasing. 
Also, for any positive integer n and 
positive real number a, taking the sum 
for x=a+i/n, y=1/n, where 1≤i≤n-1, 
we get 
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By the AM-GM inequality, we have 
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Since f(a+1)/f(a)>1, the right hand side 
will converge to 1 when n→∞. Thus, 
f(a+1)-f(a)≤-1 for all a>0. Then, 
from f(1)≥f(2)+1≥f(3)+2≥⋯, we have 
f(1)≥ f(n+1)+n for all positive integer 
n. This shows that f(1) cannot be finite, 
a contradiction. 
 
Other commended solvers: Corneliu 
MĂNESCU-AVRAM (Ploieşti, 
Romania), Apostolos MANOLOUDIS, 
George SHEN and Thomas WOO. 
 
Problem 533. Let ℤ and ℕ be the sets 
of all integers and all positive integers 
respectively. Let r, s ∈ ℕ. Prove that 
there are exactly (r+1)s+1−rs+1 functions 
g:[1,s]∩ℕ→ [-r,r]∩ℤ such that for all 
x,y∈[1,s]∩ℕ, we have |g(x)−g(y)|≤r. 
 
Solution. LAU Chung Man (Lee Kau 
Yan Memorial School), George SHEN 
and Thomas WOO. 
 
If integer k is in [-r,r]∩ℤ, then there 
are (min{r+1,r-k+1})s functions 
satisfying the given conditions which 
attain values only in {k,…,k+r}. Of 
these, (min{r,r-k})s

 functions attain 
values only in {k+1, …, k+r}. Hence, 
exactly  
 
    (min{r+1,r+1-k})s-(min{r,r-k})s 
 
functions satisfying the given 
conditions have minimum value k.  
 
This expression equals (r+1)s-rs for 
each of the r+1 values k≤0, and it 
equals (r+1-k)s-(r-k)s when k>0. Thus, 
the sum of the expression over all k≤0 
is (r+1)((r+1)s-rs), while the sumof the 
expression over all k>0 is the 
telescoping sum  
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Adding these two sums, we find that 
the total number of functions satisfying 
the given conditions is (r+1)s+1-rs+1. 
 
Other commended solvers: Jon 
GLIMMS, Michael HUI and Jeffrey 
HUI, Hei Chun LEUNG, Alvin 
LUKE (Portland, Oregon, USA) and 
Toshihiro SHIMIZU (Kawasaki, 
Japan). 
 
Problem 534.  Prove that for any two 
positive integers m and n, there exists a 
positive integer k such that 2k -m has at 
least n distinct prime divisors. 
 
Solution. Toshihiro SHIMIZU 
(Kawasaki, Japan). 
 
We show by induction that there is 
k∈ℕ such that 2k –m has at least n odd 
prime divisors. If m is even, we can 
write n=2es (with odd integer s) and 
take k>e so we have 2k-m=2e(2k-e-s). 
Then it is sufficient to show for m=s 
(odd). Thus, we assume m is odd. 
 
      Taking k∈ℕ such that 2k-m>1, we 
can take an odd prime divisor p of 
2k-m (which is odd). Assume we have 
k∈ℕ such that 2k-m has n odd prime 
divisors p1, p2, …, pn. For any i the 
pattern of 2j (mod pi) is periodic for j, 
which implies there are ei, fi ∈ℕ such 
that 2j ≡m (mod pi) if and only if 
j=eit+fi for some t∈ℕ. Since pi > 2, 
each ei is greater than 1. Thus, we can 
take fi

’ such that fi≢ fi
’ (mod ei). By the 

Chinese remainder theorem, we can 
take fi’ such that k’ ≡ fi’ (mod ei) and 
we have pi∤2k´-m for 1≤i≤n. We can 
also select k´ such that 2k´-m>1. Then 
we can take odd prime divisor pn+1 of 
2k’-m, where pn+1 is different from any 
one of p1, p2, …, pn. Then we can 
choose j such that 2j ≡ m (mod pn+1), 
where j=en+1t+fn+1 for some en+1, fn+1. 
By the Chinese remainder theorem 
again, we can take K such that K≡fi´ 
(mod ei) and we have pi∤2K-m for 
1≤i≤n+1. Then 2K-m has at least n+1 
prime factors p1, p2,…,pn+1, completing 
the induction.  
 
Problem 535. Determine all integers 
n>4 such that it is possible to color the 
vertices of a regular n-sided polygon 
using at most 6 colors such that any 5 
consecutive vertices have distinct 
colors.    
 
Solution. CHUI Tsz Fung, Hei Chun 
LEUNG, LAU Chung Man (Lee Kau 
Yan Memorial School), LW Maths 

Solving Team (SKH Lam Woo Memorial 
Secondary School) and Toshihiro 
SHIMIZU (Kawasaki, Japan). 
 
Let the colors be a, b, c, d, e, f. Denote by 
S1 the sequence a, b, c, d, e and by S2 the 
sequence a, b, c, d, e, f. If n>0 is 
representable in the form 5x+6y for x,y≥0, 
then n satisfies the conditions of the 
problem: we may place x consecutive S1 
sequences, followed by y consecutive S2 
sequences, around the polygon. Setting y 
equal to 0, 1, 2, 3 or 4, we find that n may 
equal any number of the form 5x, 5x+6, 
5x+12, 5x+18 or 5x+24. The only 
numbers greater than 4 not of this form are 
7, 8, 9, 13, 14 and 19. Below we will show 
that none of these numbers has the 
required property.  
 
Assume for a contradiction that a coloring 
exists for n equal to one of 7, 8, 9, 13, 14 
and 19. There exists a number k such that 
6k < n < 6(k+1). By the pigeonhole 
principle, at least k+1 vertices of the n-gon 
have the same color. Between any two of 
these vertices are at least 4 others, because 
any 5 consecutive vertices have different 
colors. Hence, there are at least 5k+5 
vertices, and n ≥ 5k+5. However, this 
inequality fails for n = 7, 8, 9, 13, 14, 19, a 
contradiction. Hence, a coloring is 
possible for all n≥5 except 7, 8, 9, 13, 14 
and 19. 
  

 
 
Notes on IMO 2019 
 
                     (Continued from page 1)                      
 
Problem 3 is a graph algorithmic problem. 
The problem is not real hard, but the 
essential difficulty is hidden by the 
numbers, students also might find it hard 
because they do not have the language of 
graph theory. Namely the graph is 
connected, with at least three vertices and 
is not complete, and there is a vertex of 
odd degree. Then it is possible to find a 
vertex and apply the operation, and reduce 
the number of edges by 1, yet maintaining 
the essential initial conditions. There is no 
worry of the existence of a cycle, for 
instance, during the operations. Otherwise 
the cycle can only be shrunk to a triangle 
and get stuck. At least a solution is 
conceivable.  
 
          I do not know what to say about 
problem 2 and 6 (medium and hard 
geometry problem). Our team did not do 
too well. It suffices to say, problem 2 may 
be done by careful angle chasing, while 

problem 6 is more complicated, but 
there is a nice and not too complicated 
complex number solution. 
 
In short, leaders generally agreed that 
those problems are do-able. If one 
understands what is going on, one 
should be able to do those problems, 
and there is no need of deep and/or 
obscure theorems. I recalled one of my 
teachers told us, there really is “no 
mystery”, if you get the point. Also it 
came to my mind Hilbert’s motto: wir 
mussen wissen, wir werden wussen (we 
must know, we will know). Indeed at 
the end, the cut-off scores were 
relatively high, 17 for bronze, 24 for 
silver, and 31 for gold, and in total 6 
contestants obtained full mark.  

After coordination and the final Jury 
meeting, we managed to get 1 silver 
medal (Harris) and 3 bronze (Wan, 
Daniel and Omega). Surely it was not 
too good, but not too bad either. Indeed 
they could do better. For instance, 
Bruce was only 1 point below bronze, 
and Sui Kei 3 points (he got a 
honorable mention by scoring full 
mark in a problem), should they not 
making several trivial mistakes (also 
made by members of several strong 
teams), they should get medals. Both 
Daniel and Wan solved three problems, 
and in my opinion potential silver 
medalists. On the whole, I notice they 
have been working hard during the last 
two months, so I don’t think I should 
blame them too much. One thing 
however I think our team members 
should watch out is, in case they will 
come back next time, they should 
know how much further effort they 
need to devote and know what they 
expect.  

      I have given my opinions and 
suggestions. Accordingly 2020 IMO 
will be held in Russia, 2021 in USA, 
2022 in Norway, 2023 in Japan, 2024 
in Shanghai China (probably) and 2025 
in Australia. Some people have been 
working hard to make future IMOs 
possible. I hope Hong Kong will 
continue to join. However I cannot be 
too sure. For one thing, not sure if 
Hong Kong will be as relatively 
free/peaceful/prosperous to sustain 
events of this kind. Even so, I am not 
quite sure if our students may maintain 
their interest. Life is hard (as usual). 
Let’s hope for the best. Good Luck. 
 

 


