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Olympiad Corner
1996 Canadian Mathematical Olympiad:

Problem 1. If o, B and vy are the roots of
©-x-1=0, compute

1+a+l+,6'+l+y‘
l-a 1-8 1-y

Problem 2. Find all real solutions to the
following system of equations:

 4x? =y
1+4x*> 77
2
3 4y 5 =12,
1+4y
4z° .
1+4z° .

Carefully justify your answer.

Problem 3. We denote an arbitrary
permutation of the integers 1,2, -+, nby
a;, as, ***, a,. Let f{n) be the number of
these permutations such that

i) a=1;

(continued on page 4)
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Fermat's Little Theorem and Other Stories

T.W. Leung
- Hong Kong Polytechnic University

Pierre ‘de Fermat (1601-1665), a
councilor of the provincial High Court
of Judicature in Toulouse, south of
France, practised mathematics during

his spare time. He discussed his findings

with his friends via letters. As it turned
out, his works significantly influenced
the  development of  modern
mathematics. During Fermat's time, the
following . “Chinese hypothesis” was
around:

- pisaprime if and only if 27 =2 (modp).

One direction of the hypothesis is not
true. In fact 2**! — 2 is divisible by 341,
yet 341 = 11 x 31 is composite (not
prime). However the other direction is
indeed valid. From the manuscripts and
letters of Fermat, we conclude that
Fermat knew (and most likely could
prove) the following facts:

(1) If nis not a prime, then 2" — 1 isnot a
prime.

() If n is a prime, then 2" — 2 is a
‘multiple of 2n. .

(3)If n is a prime, and p is a prime
‘divisor of 2" — 1, then p — 1 is a
multiple of n.

The first statement can be proved
directly by factoring 2" — 1. If n = pg
(with p> 1 and ¢ > 1), then

2"-1=2M~1 :
=(2F - 1)(2p(q-1) +2PED L4 1.

The other two statements are variations
of the more general statement, indicated
in his other letter:

Given any prime p, and any
geometric progression 1, a, &, -,
the number p must divide some
number a" — 1, for which n divides
p-1; if then N is any multiple of the
smallest number 7 for which this is
so, p divides also &" - 1.

With modern mathematical notatioh, we

may rewrite Fermat's statement as the
following which will be referred to as
Fermat's Little Theorem:

If p is a prime number and a is any
integer, then ¢° = a (mod p). In
particular, if p does not divide g,
then @' = 1 (mod p).

Now we see how Fermat made use of
his little theorem. He was challenged to .
determine if there is any even perfect
number lying between 10°° and 1072 (A
positive integer n is called a perfect
number if the sum of all proper factors
(i.e., excluding »n) of n is equal to n. For
example,6=1+2+3and28=1+2+4

+ 7 + 14 are perfect numbers.) This

problem can be reduced (how?) to check
if2°” — 1 is prime. Suppose the number is
not prime, and p is an odd prime divisor
of that number, then from the third
statement, p — 1 is a multiple of 37, or
p=37k+ 1, observe that p is odd, so kis
even, or p is of the form 74k’ + 1. The
first few candidates are 149, 223, ---.

One then check that
2%7 — 1 =137438953471
=223 x 616318177.

It is more difficult to check that the
second factor is a prime, however
Fermat succeeded in showing that 2* - 1
is not prime.

Another side story comes from the
fact that if 2™ + 1 is prime, then m must
be of the form 2". Fermat conjectured
that all these numbers are prime. Now

2! 2?2 23
29 +1=52"+1=17,2° +1=257
4
and 2% + 1 = 65537 are indeed prime
numbers. However, :

22 1 1 = 4294967297

is not a prime. In fact, if p is a prime
factor of 22" + 1, then 2™ is the smallest
(continued on page 2)
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Fermat’s Little Theorem ...
(continued from page 1)

m satisfying 2" = 1 (mod p), thus 2"
divides p — 1, or p is of the form k2™ +
1, hence to look for prime factors of 27
+1=2%+ 1, we should consider primes
of the form 64k + 1. The possible
candidates are 193, 257, 449, 577,
641, ---. Unfortunately, neither Fermat
nor his contemporaries had enough
patience to check that 641 indeed
divides 22 + 1. (For readers who are
familiar with the law of quadratic
reciprocity, one can prove that a prime

divisor of 22" + 1 is actually of the form
™+ 1)

Fermat did not explicitly give any
proof of the Fermat's little theorem, and
it was Euler who first proved by
induction the following fact: if p is a
prime then &’ = a (mod p). Clearly the
statement is true if @ = 1. Now

(a+1y

=a” +(pJa”" +(p)a”‘2+---+1
A1 2

=a+1 (mod p),

!
where (p) = —f—-——— =0 (mod p) for
i i(p—i)!

1<i<p-1.

There is also another version of the
theorem, namely, if p is a prime and a is
relatively prime to p, then &' = 1
(mod p). Euler also gave the first proof
by noting that the terms of the series 1, a,
a, -+ (mod p) must repeat. So for some
- r20,and some s > 0, we must have o™ =
a’ (mod p), i.e., d’ = 1 (mod p). Let s be
the smallest positive integer such that o’
= 1 (mod p), then one can arrange the
p-1 non-zero congruence classes
modulo p into sets {b, ba, +--,ba""'},
where each set consists of s elements and
the sets are disjoint. Thus s must divide
p—1. For example, withp =7 and a = 2,
one obtains s = 3 and the numbers 1 to 6

can be grouped into two disjoint sets {1,

2,4} and {3, 6,5}. We also observe that
p—-1 = 6 is divisible by s = 3. Euler
generalized this argument to prove the
famous Euler's theorem:

If a is relatively prime to n, then
a* =1 (mod n),

where ¢(n) is the Euler totient function
that counts the number of integers

between 1 and » that are relatively prime
to n. For example, $(12) = 4 since only
1, 5,7, 11 (among the numbers 1-12) are
relatively prime to 12.

A formal proof of Euler's theorem
goes as follows: Let a be an integer
relatively prime to # and let {a,, a, ...,
ayn be the set of reduced residues
modulo # (i.e., the ¢(»n) positive integers
less than » that are relatively prime to #).
Then the set {aa,, aay, ..., aayy} is also
a set of reduced residues modulo n.
Hence,

Q" Qymy = a¢(n)alaz" Ay (mod #)

or @™ =1 (mod n).

There is however another colouring
argument for Fermat's little theorem.
Arrange p boxes in a circle and colour
them with- a colours. There are o
possible colouring patterns. Among all
these possible colourings, a of them are
such that every box has the same colour.
The remaining ¢’ — a colouring patterns

_can be grouped into sets of p patterns

that are rotations of each other. The p
rotations of any one of these colourings
are all distinct and thus p divides & - a.
(Where did we use “p is prime”?) Hence,
in essence, the Fermat's little theorem
can be proved using the pigeonhole
principle.

The following are some applications
of Fermat's little theorem and Euler's
theorem.

Example 1: If n is an integer > 1, then n
does not divide 2" - 1.

Solution: If n is even, then the statement
is certainly true since 2" — 1 is an odd
integer. For n odd, denote by p the
smallest prime divisor of n. Suppose »
(and thus also p) divides 2" — 1. By the
Fermat's little theorem, p divides 27" ~ 1
too. Consequently, p divides 2¢ — 1,
where d is the greatest common divisor
of p — 1 and n, Since p is the smallest
prime divisor of n, d = 1 which leads to
the contradiction p divides 1.

Example 2: Let n be an odd number not
divisible by 5, then » divides a number
of the form 99-+:9.

Solution: If  is odd and not divisible by
5, then n is relatively prime to 10. By the

Euler's theorem, 10*" =1 (mod n),ie.,n
divides 10*® — 1, which is a number of
the form 99:--9.

Example 3: Let p be an odd prime
number. Then for any set of 2p — 1
integers, there exists a set of p integers
whose sum is divisible by p.

Sketch There

of Solution: are

2p~1
n=( P )distinct sets that each
P

contains p elements. Denote their sums
by sy, 83, ..., 84 Suppose none of them is
divisible by p. Then, by the Fermat's

n n
little theorem, Y s,”~' = 3 1=n, which
© =l i=1
is nonzero modulo p. On the other hand,
one may use the multinomial expansion

n

to show that 5,7 is, in fact, divisible
=1

by p, and thus lead to a contradiction.

It is interesting to observe that we use
a number theoretic approach to solve a
combinatorial problem while using a
counting argument to prove Fermat's
little theorem.

We have mentioned that the converse
of Fermat's little theorem is not true.
That is, there exists composite numbers
n such that »n divides a™' — 1. For
example, as stated at the beginning of
this article, the composite number 341
divides 2**° - 1. Composite numbers »
(which must be odd) that divides 2" - 1
are called pseudoprimes (in base 2).
One may show that there exist infinitely
many such pseudoprimes. In fact, if # is
a pseudoprime, then m =2" — 1 will be
composite (since » is composite). Also,
m—1=2"-2=nkand thus 2" - 1 =2"
—1is divisible by 2" — 1 =m. That is, m
is another pseudoprime (in base 2).

We may of course try another base.
For our example, we find that 341 is no
longer a pseudoprime (in base 3), i.e.,
341 does not divide 3**° — 1. Well, we
may then ask: is it possible to find a
composite number » such that for every
a relatively prime to #, @ = 1 (mod #).
Such a number is called a Carmichael
number. Surprisingly, not only that they
exist (with 561 being the smallest), there
are infinitely many Carmichael numbers,
which, in fact, was proved recently!
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Problem Corner

We welcome readers to submit solutions
to the problems posed - below for
publication consideration.  Solutions
should be preceded by the solver’s
name, address, ‘school affiliation and
grade level. Please send submissions to
Dr. Kin-Yin Li, Dept of Mathematics,
.Hong Kong University of Science and
Technology, Clear  Water  Bay,
Kowloon. The deadline for submitting
solutions is July 10, 1996.

The following problems are selected
from the International Mathematics

Tournament of _the Towns, held in

April 7, 1996.

‘Problem 36. Let a, 5 'and ¢ be positive
numbers such that o® + b* — ab = ¢
Prove that (a—c)(b—c) < 0.

Problem 37. Two non-intersecting
circles A; and A, have centres O, and O,
respectively. 4; and 4, are points on A,
and 4, respectively, such that 4,4, is an
external common tangent of the circles.
The segment 0,0, intersects A, and A, at
B, and B, respectively. The lines 4,B,
and A4,B, intersect at C, and the line
through C perpendicular to BB,
intersects A4, at D. Prove that D is the
midpoint of 4,4,.

Problem 38. Prove that from any
sequence of 1996 real numbers, one can
choose a block of consecutive terms
whose sum differs from an integer by at
most 0.001. '

Problem 39. Eight students took part in

a contest with eight problems.

(a) Each problem was solved by 5
students. Prove that there were two
students who between them solved
all eight problems.

(b) Prove that this is not necessarily the
case if 5 is replaced by 4. (A
counterexample is enough.)

Problem 40. ABC is an equilateral
triangle. For a positive integer n>2, D is
the point on AB such that AD =1 A4B.
Py, Py, +++, P, are points on BC which
divide it into n equal segments. Prove
that £L4P,D + L AP, D + -+ LAP,.\D
=30°

[Hint: Consider Q; such that ADP,Q; is a
parallelogram.]

e

wkkddkkkhkhhhhdhk

Solutions
Fekdkdh ko hkhhhkht

Problem 31. Show that for any three
given odd integers, there is an odd
integer such that the sum of the squares
of these four integers is also a square.

Solution: Independent solution by
William CHEUNG Pok-man (S.T.F.A.
Leung Kau Kui College, Form 5), Gary

NG Ka Wing (S.T.F.A. Leung Kau Kui-

College, Form 3), Henry NG Ka Man
(S.T.F.A. Leung Kau Kui College, Form
5) and PAI Hung Ming Tedward
(SK.H. Tang Shiu Kin Secondary
School, Form 6).

Letx=2a+1,y=2b+1,z=2¢c +1be
three given odd integers, then x” + y* + 2*
=2w+ 1, wherew=2(a*+a+b*+b+
c?+¢)+1is odd. Sox* +y*+ 2 +w=
(w+ 1%

Other commended solver. CHAN Wing
Chiu (La Salle College, Form 3),
CHENG Wing Kin (S.K.H. Lam Woo
Secondary School, Form 4), Calvin
CHEUNG Cheuk Lun (S.T.F.A. Leung
Kau Kui College, Form 4), W. H. FOK
(Homantin Government Secondary
School), Alan LEUNG Wing Lun
(S5.T.F.A. Leung Kau Kui College, Form
4), LIU Wai Kwong (Pui Tak
Canossian College), POON Wing Chi
(La Salle College) and YAU Kwan Kiu
(Queen's College, Form 7).

Problem 32. Let ap = 1996 and a,y =
a,(a,+1)forn=0,1,2, .... Prove that
[a.]=1996 ~nforn=0,1,2, ..., 999,
where [x] is the greatest integer less than
or equal to x.

Solution: Independent solution by
CHAN Wing Sum (HKUST), W. H.
FOK (Homantin Government
Secondary School) and KU Yuk Lun
(HKUST).

Note that a, > 0 implies a,+, > 0 and

1 >0.

a, +1

Ay = Apyy =1—

Hence ay > a; > a, > ++-. Now
a, = ap+(ay—ag) + - +(ay - an)
1

= 1996 —nt—t s
a,_; +1

ay +1
> 1996 — n.

i

For 1 £n <999,

1 - 1 <"
ao +1 an_| _+ 1 an—l +1
999 999

<
Qggg + 1 1996 - 998 + 1

<

So [a,] = 1996 - .

Comments: With 1996 replaced by
1994, 999 replaced by 998, this was a
problem proposed by USA in the 1994
IMO. :

Other commended solver: William
CHEUNG Pok-man (S.T.F.A. Leung
Kau Kui College, Form 5), Henry NG
Ka Man (S.T.F.A. Leung Kau Kui
College, Form 5), POON Wing Chi (La
Salle College) and YAU Kwan Kiu
(Queen's College, Form 7).

Problem 33. Let 4, B, C be noncollinear
points. Prove that there is a unique point
X in the plane of 4BC such that X4* +
XB® + AB* = XB* + XC* + BC* = XC* +
XA* + CA®. (A problem proposed by
Germany in the last IMO.)

Solution: Henry NG Ka Man
(STF.A. Leung Kau Kui College,
Form 5). .

Without loss of generality, we may
assume A4, B, C have coordinates (a,0),
(b,0), (0,c), (where a#b and c=0)
respectively. Let X be a point. in the
plane of 4BC with coordinates (x,y). For
X to satisfy the given conditions, the
equations on x and y are ax — ¢y = a* — ¢*
—ab,bx—cy=b*-c*—abandx=a+b
(after simplification), which has a
unique solution (x,y) = (a+b, c+2ab/c).

Other commended solvers: Calvin
CHEUNG Cheuk Lun (8. T.F.A. Leung
Kau Kui Cbllege, Form 4), William
CHEUNG Pok-man (S.T.F.A. Leung
Kau Kui College, Form 5), W. H. FOK
(Homantin Government. Secondary
School), Alan LEUNG Wing Lun
(S.T.F.A. Leung Kau Kui College, Form
4), LIU Wai Kwong (Pui Tak
Canossian College) and Gary NG Ka
Wing (S.T.F.A. Leung Kau Kui
College, Form 3).

Problem 34. Let n>2 be an integer, ¢ be
a nonzero real number and z be a nonreal

(continued on page 4)
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Problem Corner
(continued from page 3)

root of X" + ¢X + 1. Show that

2

-1
Solution 1: W. H. FOK (Homantin
Government Secondary School).

Write z = r(cos8 + isinB) with sin® = 0.
Taking the real and imaginary parts of
2"+ ¢z + 1 = 0 using De Moivre's
‘theorem, we have

F'cosnB® + crcos@+ 1= 0
and r'sinnd + crsin® = 0.

Then

¥'sin(n-1)0 = #'sinnbcosd — r"cosnesiné
= -crsinBcosd + (crcosd + 1)sind
= sinB.

Since

[sin(k+1)6| = |sinkBcosd + coskOsin)|
< [sinkB| + [sind|,

induction gives [sink6| < A|sin6| for every
positive integer £. So

laf" = " = lsin®/sin(n~1)8| 2 1/(n-1).

Solution 2: LEUNG Hoi-Ming (SKH
Lui Ming Choi Secondary School).

Letr= |zl and w = z/r. Then |w|=1 and
ww=1. Since (rw)" + crw + 1 =0,
mutltiplying by %, then conjugating, we
get ' :

W' rer+w=0

and " e +w=0.

Subtracting these equations and solving
for 7", we get
P w _ 1

n=1 _ —n-1 n-2 T
w w an_z-’W'

Since 7 is real and jw| = 1, by the triangle
inequality,

n 1 1

> =
n=-2 9iei
S W]
i=0

r .n-—l'

Other commended solvers: William
CHEUNG Pok-man (S.T.F.A. Leung
Kau Kui College, Form 5).

_ Problem 35. On a blackboard, nine 0's
and one 1 are written. If any two of the
numbers on the board may both be

" replaced by their average

in one
operation, what is the least positive
number that can appear on the board
after a finite number of such operations?

Solution: POON Wing Chi (La Salle
College).

Let m be the least positive number on the
board and » be the number of zeros on
the board after an operation. Consider
the number ¢ = m/2", If two positive
nurbers are both replaced by their
average, then »n does not change, but m
(and ¢) may increase. If a 0 is averaged
with a positive. number r, then n
decreases by one and m remains
unchanged or becomes #/2 (= m/2.) The
new c¢ value will be greater than or equal
to (m/2)/2"! = m/2", which is the old ¢
value. In the beginning, ¢ = 1/512. After
a finite number of operations, ¢ = 1/512
and m = 27512 > 1/512. To obtain
exactly 1/512, start with 1 and average
with each of the nine 0's.

Comments: This problem comes from an
article in the March/April 1994 issue of
Quantum, published by Springer Verlag.

- The article dealt with the concept of

monoinvarignt, which is an expression
like ¢ in the problem that increases after
each operation. Studying such
expression often solves the problem.

Olympiad Corner
(continued from page 1)

() la—aml <2, i=1,- n-1.
Determine whether f{1996) is divisible
by 3.

Problem 4. In AABC, AB = AC.
Suppose that the bisector of £B meets
AC at D and that BC = BD + AD.
Determine £A.

Problem 5. Letr, ry, ..., r, be m given
positive rational numbers such that

M=

rk'-:l.
k

Define the function fby

1

- f(W=n- éL’k"J

for each positive integer n. Determine
the minimum and maximum values of

).

From the Editors' Desk:

Thanks to our readers for another year
of support, especially the submission of
articles and problem solutions. If you

.would like to receive your personal copy

for the five issues for the 96-97
academic year, send five stamped self-
addressed envelopes to Dr. Kin-Yin Li,
Hong Kong University of Science and
Technology, Department of
Mathematics, Clearr Water Bay,
Kowloon, Hong- Kong. :
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APMO and IMO: The Eighth APMO
took place on March 16th. The Hong
Kong students had a very strong (record
settinig) performance. The top 8 scorers
are as follow. (Note the maximum is
7x5=35 points.)

1. &#4., (Bobby POON Wai Hoi),
St. Paul's College, 35 points (Perfect
score! First time for Hong Kong)

2. %¥EE (YU Chun Ling), Ying Wa
College, 33 points

3. {a[#E% (HO Wing Yip), Clementi
Secondary School, 32 points

4. B8 (MOK Tsz Tao), Queen's
College, 31 points

5. A (TSE Shan Shan), Tuen

Mun Government Secondary School,

29 points

6. #EEHE (LAW Siu Lung), Diocesan
Boy's School, 26 points

7. 8, (YUNG Hon Wai), Heep
Woh College, 26 points

8. &Kt (CHU Tim Kin), King's
College, 24 points

The first 6 students are invited to be the
Hong Kong team members to participate
in the 37th International Mathematical
Olympiad to be held in India this
summer. The selection was based on
their outstanding performance in the
APMO and throughout the Hong Kong
Math Olympiad training program.

T FARA &
A 0.2, ayJ2*
A ’ an: JZ““" , o ,
Con.vujc .
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