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 International Mathematical 

Olympiad, July 1998: 

Each problem is worth 7 points. 

Problem 1.  In the convex quadrilateral 

ABCD, the diagonals AC and BD are 

perpendicular and the opposite sides AB 

and DC are not parallel.  Suppose that the 

point P, where the perpendicular 

bisectors of AB and DC meet, is inside 

ABCD.  Prove that ABCD is a cyclic 

quadrilateral if and only if the triangles 

ABP and CDP have equal areas. 
 

Problem 2.  In a competition, there are a 

contestants and b judges, where b ≥  3 is 

an odd integer.  Each judge rates each 

contestant as either "pass" or "fail".  

Suppose k is a number such that, for any 

two judges, their ratings coincide for at 

most k contestants.  Prove that 

b

b

a

k

2

1−
≥ . 

 

Problem 3.  For any positive integer n, 

let d(n) denote the number of positive 

divisions of n (including 1 and n itself).  
 

(continued on page 4) 

The rearrangement inequality (or the 

permutation inequality) is an elementary 

inequality and at the same  time a  

powerful inequality.  Its statement is as 

follow.  Suppose naaa ≤≤≤ L21  and 

nbbb ≤≤≤ L21 .  Let us call  

A = nnbababa +++ L2211  

 the ordered sum of the numbers and  

B = 1121 bababa nnn +++ − L  

 the reverse sum of the numbers.  If 

nxxx ,...,, 21  is a rearrangement (or 

permutation) of the numbers nbbb ,...,, 21  

and if we form the mixed sum 

,2211 nn xaxaxaX +++= L  

then the rearrangement inequality asserts 

that A ≥  X ≥  B.  In the case the ia 's are 

strictly increasing, then equality holds if 

and only if the ib 's are all equal. 

 

We will look at A ≥  X first.  The proof is 

by mathematical induction.  The case n = 

1 is clear.  Suppose the case n = k is true.  

Then  for  the case n = k + 1, let  

ik xb =+1  and jk bx =+1 .  Observe that 

0))(( 11 ≥−− ++ jkik bbaa .  We get 

jkkikkji babababa 1111 ++++ +≥+ . 

So in X, we may switch ix  and 1+kx  to 

get a possibly larger sum.  After switching, 

we can apply the case n = k to the first k 

terms to conclude that A ≥  X.  The 

inequality X ≥  B follows from A ≥  X 

using 11 bbb nn −≤≤−≤− − L  in place of 

nbbb ≤≤≤ L21 . 

 

Now we will give some examples. 

 

Example 1.  (Chebysev's Inequality)  Let 

A and B be as in the rearrangement 

inequality, then 

( )( )
.11 B

n

bbaa
A nn ≥

++++
≥

LL
 

Proof.  Cyclically rotating the ib 's, we get 

n mixed sums  

+++ L2211 baba  ,nnba  

,13221 bababa n+++ L  

..., 

nba1 + 112 −++ nnbaba L . 

 
By the re-arrangement inequality, each of 
these  is  between A and B, so their  
average is also between A and B.  This 
average is just the expression given in the 
middle of Chebysev's inequality. 
 

Example 2.  (RMS-AM-GM-HM 

In-equality)  Let .0,...,, 21 ≥nccc   The 

root mean square (RMS) of these 

numbers is 1/2 22
1 ]/)[( ncc n++L , the 

arithmetic mean (AM) is 

nccc n /)( 21 +++ L  and the geometric 

mean (GM) is ( ) n
nccc

/1
21 L .  We have 

RMS ≥  AM ≥  GM.  If the numbers are 

positive, then the harmonic mean (HM) is 

( ) ( )[ ]nccn /1/1 1 ++L .  We have GM ≥  

HM. 

 

Proof.  Setting iii cba ==  in the left half 

of Chebysev's inequality, we easily get 

RMS ≥  AM.  Next we will show AM ≥  

GM.  The case GM = 0 is clear.  So 

suppose GM > 0.  Let ,/11 GMca =  

2
212 /GMcca = , ..., nn ccca L21=  

1/ =
nGM  and 1/1 +−= ini ab  for i = 1, 

2, ... n.  (Note the ia 's may not be 

increasing, but the ib 's will be in the 

reverse order as the ia 's).  So the mixed 

sum 
=+++ 2211 bababa nn L  

GMcGMcGMc n /// 21 +++ L  

is greater than or equal to the reverse sum 

.11 nbaba nn =++L   The AM-GM 

inequality follows easily.  Finally GM ≥  

HM follows by applying AM ≥  GM to the 

numbers ncc /1 ..., ,/1 1 . 
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Example 3.  (1974 USA Math Olympiad)  

If a, b, c > 0, then prove that 

3/)()( cbacba abccba ++
≥ . 

Solution.  By symmetry, we may assume 

cba ≤≤ , then ln cba lnln ≤≤ .  By 

Chebysev's inequality, 

ccbbaa lnlnln ++  

.
3

)lnln)(ln( cbacba ++++
≥  

The desired inequality follows from 

exponentiation. 
 

Example 4.  (1978 IMO)  Let 1c , 2c , ..., 

nc  be distinct positive integers.  Prove 

that 

nn

cc
c n 1

2

1
1

4 2
2

1 +++≥+++ LL . 

Solution.  Let 1a , 2a , ..., na  be the ic 's 

arranged in increasing order.  Since ia 's 

are distinct positive integers, iai ≥ .  

Since 2/1...4/11 n>>> , by the 

re-arrangement inequality, 

2

2
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4 n

cc
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Example 5.  (1995 IMO)  Let a, b, c > 0 

and abc = 1.  Prove that  

+
+

+
+ )(

1

)(

1

33
acbcba 2

3

)(

1

3
≥

+ bac
. 

Solution.  (HO Wing Yip, Hong Kong 

Team Member)  Let x = bc = 1/a, y = ca = 

1/b, z = ab = 1/c.  The required inequality 

is equivalent to 

2

3
222

≥
+

+
+

+
+ xy

z

zx

y

yz

x
. 

By symmetry, we may assume x ≤ y ≤ z, 

then 222 zyx ≤≤  and 1/(z + y) ≤  1/(x + 

z) ≤  1/(y + x).  The left side of the 

required  inequality is  just the ordered 

sum A of the numbers.  By the 

rearrangement inequality, 

zx

z

yz
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Intersecting Chords Theorem.  Let two 

lines through a point P not on a circle 

intersect the inside of the circle at chords 

AA' and BB', then  PA ×  PA'  = PB ×  

PB'. (When P is outside the circle, the 

limiting case A = A' refers to PA tangent 

to the circle.) 
 

This theorem follows from the 

observation that triangles ABP and A'B'P 

are similar and the corresponding sides 

are in the same ratio.  In the case P is 

inside the circle, the product PA ×  PA' 

can be determined by taking the case the 

chord  AA'  passes through P and the 

center O.  This gives PA ×  PA' = 
22 dr − , where r is the radius of the  

circle and  d  = OP.  In the case P is 

outside the circle, the product PA ×  PA' 

can be determined by taking the limiting 

case PA is tangent to the circle.  Then PA 

×  PA'  = 22 rd − . 

 

The power of a point P with respect to a 

circle is the number 22 rd −  as 

mentioned above.  (In case P is on the 

circle, we may define the power to be 0 for 

convenience.)  For two circles 1C  and 

2C  with different centers 1O  and 2O , 

the points whose power with respect to 

1C  and 2C  are equal form a line 

perpendicular to line 1O 2O .   (This can 

be shown by setting coordinates with line 

1O 2O  as the x-axis.)  This line is called 

the radical axis of the two circles.  In the 

case of  the three circles 1C , 2C , 3C  

with noncollinear centers 1O , 2O , 3O , 

the three radical axes of the three pairs of 

circles intersect at a point called the 

radical center of  the three circles.  (This 

is because the intersection point of any 

two of these radical axes has equal power 

with respect to all three circles, hence it is 

on the third radical axis too.) 
 

If two circles 1C  and 2C  intersect, their 

radical axis is the line through the 

intersection point(s) perpendicular to the 

line of the centers.  (This is because the 

intersection point(s) have 0 power with 

respect to both circles, hence they are on 

the radical axis.)  If the two circles do not 

intersect, their radical axis can be found 

by taking a third circle 3C  intersecting  

 

 

 

 
 
both 1C  and 2C .  Let the radical axis of  

1C , 3C  intersect the radical axis of 2C , 

3C  at P.  Then the radical axis of 1C , 2C  

is the line through P perpendicular to the 

line of centers of 1C , 2C . 

We will illustrate the usefulness of the 

intersecting chords theorem, the concepts 

of power of a point, radical axis and 

radical center in the following examples. 

 

Example 1.  (1996 St. Petersburg City 

Math Olympiad)  Let BD be the angle 

bisector of angle B in triangle ABC with D 

on side AC.  The circumcircle of triangle 

BDC meets AB at E, while the 

circumcircle of triangle ABD meets BC at 

F.  Prove that AE = CF. 

 

Solution.  By the intersecting chords 

theorem, AE ×  AB = AD ×  AC and CF 

×  CB = CD ×  CA, so AE/CF = 

(AD/CD)(BC/AB).  However, AB/CB = 

AD/CD by the angle bisector theorem.  So 

AE = CF. 

 

Example 2.  (1997 USA Math Olympiad)  

Let ABC be a triangle, and draw isosceles 

triangles BCD, CAE, ABF externally to 

ABC, with BC, CA, AB as their respective 

bases.  Prove the lines through A, B, C, 

perpendicular to the lines EF, FD, DE, 

respectively, are concurrent. 

 

Solution.  Let 1C  be the circle with center 

D and radius BD, 2C  be the circle with 

center E and radius CE, and 3C  be the 

circle with center F and radius AF.  The 

line through A perpendicular to EF is the 

radical axis of 2C , 3C , the line through B 

perpendicular to FD is the radical axis of 

3C , 1C  and the line through C 

perpendicular to DE is the radical axis of 

1C , 2C .  These three lines concur at the 

radical center of the three circles. 

 

Example 3.  (1985 IMO)  A circle with 

center O passes through vertices A and C 

of triangle ABC and intersects side AB at 

K and side  BC at  N.  Let  the 

circumcircles of triangles ABC and KBN 

intersect at B and M.  Prove that OM is 

perpendicular to BM. 
 

(continued on page 4) 
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Problem Corner 
 

We welcome readers to submit solutions 

to the problems posed below for 

publication consideration.  Solutions 

should be preceeded by the solver’s 

name, home address and school 

affiliation.  Please send submissions to 

Dr. Kin Y. Li, Department of 

Mathematics, Hong Kong University of 

Science and Technology, Clear Water 

Bay, Kowloon.  The deadline for 

submitting solutions is April 30, 1999. 

 

Problem 81.  Show, with proof, how to 

dissect a square into at most five pieces 

in such a way that the pieces can be 

reassembled to form three squares no two 

of which have the same area.  (Source: 

1996 Irish Mathematical Olympiad) 
 

Problem 82.   Show that if  n is an  

integer greater than 1, then nn 44
+  

cannot be a prime number.  (Source: 

1977 Jozsef Kurschak Competition in 

Hungary) 
 

Problem 83.  Given an alphabet with 

three letters a, b, c, find the number of 

words of n letters which contain an even 

number of a's.  (Source: 1996 Italian 

Mathematical Olympiad) 
 

Problem 84.  Let M and N be the 

midpoints of  sides AB  and  AC of 

∆ ABC, respectively.  Draw an arbitrary 

line through A.  Let Q and R be the feet  

of the perpendiculars from B and C to 

this line, respectively.  Find the locus of 

the intersection P of the lines QM and RN 

as the line rotates about A. 
 

Problem 85.  Starting at (1, 1), a stone is 

moved in the coordinate plane according 

to the following rules: 

(a) From any point (a, b), the stone can 

be moved to (2a, b) or (a, 2b). 

(b) From any point (a, b), the stone can 

be moved to (a - b, b) if a > b, or to 

(a, b - a) if a < b. 

For which positive integers x, y, can the 

stone  be  moved  to (x, y)?  (Source: 

1996 German Mathematical Olympiad) 

 

***************** 

Solutions 
***************** 

 

Problem 76.  Find all positive integers   

N such that in base 10, the digits of 9N    

is the reverse of the digits of N and N    

has at most one digit equal 0.  (Source:  

1977 unused IMO problem proposed by 

Romania) 
 

Solution.  LAW Ka Ho (Queen  

Elizabeth School, Form 6) and Gary NG 

Ka Wing (STFA Leung Kau  Kui  

College, Form 6). 

 

Let ] ... [ 21 naaa  denote N in base 10 with 

.01 ≠a   Since 9N has the same number of 

digits as N, we get 1a = 1 and na  = 9.  

Since 9 ≠×19 91, n > 2.  Now 2[ 9 a  ... 

1−na ] + 8 = [ 1−na  ... 2a ].  Again from 

the number of digits of both sides, we get 

≤2a  1.  The case 2a  = 1 implies 9 1−na  

+ 8 ends in 2a  and so 1−na  = 7, which is 

not possible because 9[1 ... 7] + 8 > [7 ... 

1].  So 2a  = 0 and 1−na  = 8.  Indeed, 

1089 is a solution by direct checking.  For 

n > 4, we now get ]  [ 9 23 −naa K  + 8 = 

[8 2−na ... 3a ].  Then 3a ≥  8.  Since 

9 2−na  + 8 ends in 3a , 3a  = 8 will imply 

2−na  = 0, causing another 0 digit.  So 3a  

= 9 and 2−na  = 9.  Indeed, 10989 and 

109989 are solutions by direct checking.  

For n > 6, we again get ]  [ 9 34 −naa K  + 8 

= [8 3−na ... 4a ].  So 4a  = ... = 3−na  = 9.  

Finally direct checking shows these 

numbers are solutions. 
 

 

Other recommended solvers:  CHAN Siu 

Man (Ming Kei College, Form 6), 

CHING Wai Hung (STFA Leung Kau 

Kui College, Form 7), FANG Wai Tong 

Louis (St. Mark's School, Form 6), KEE 

Wing Tao Wilton (PLK Centenary Li 

Shiu Chung Memorial College, Form 7), 

KWOK Chi Hang (Valtorta College, 

Form 7), TAM Siu Lung (Queen 

Elizabeth School, Form 6), WONG Chi 

Man  (Valtorta  College, Form 4), 

WONG Hau Lun (STFA Leung Kau Kui 

College, Form 7) and WONG Shu Fai 

(Valtorta College, Form 7). 
 

 

Problem 77.  Show that if ∆ ABC 

satisfies 

,2
cos  coscos

sinsinsin

222

222

=
++

++

CBA

CBA
 

then it must be a right triangle.  (Source: 

1967 unused IMO problem proposed by 

Poland) 
 

Solution.  (All solutions received are 
essentially the same.) 

Using 2/)2cos1(sin2 xx −=  and 

x2cos = (1 + cos 2x)/2, the equation is 

equivalent to 

.012cos2cos2cos =+++ CBA  

This yields cos(A + B) cos(A - B) + cos
2
 

C = 0.  Since cos(A + B) = -cosC, we get 

cosC (cos(A - B) + cos(A + B)) = 0.  This 

simplifies to cosC cosA cosB = 0.  So one 

of the angles A, B, C is 90
0
. 

 

Solvers:  CHAN Lai Yin, CHAN Man 

Wai, CHAN Siu Man, CHAN Suen 

On, CHEUNG Kin Ho, CHING Wai 

Hung, CHOI Ching Yu, CHOI Fun 

Ieng, CHOI Yuet Kei, FANG Wai 

Tong Louis, FUNG Siu Piu, HUNG 

Kit, KEE Wing Tao Wilton, KO Tsz 

Wan, KWOK Chi Hang, LAM Tung 

Man, LAM Wai Hung, LAM Yee, 

LAW Ka Ho, LI Ka Ho, LING Hoi 

Sheung, LOK Chan Fai, LUNG Chun 

Yan, MAK Wing Hang, MARK Kai 

Pan, Gary NG Ka Wing, OR Kin, 

TAM Kwok Cheong, TAM Siu Lung, 

TSANG Kam Wing, TSANG Pui Man, 

TSANG Wing Kei, WONG Chi Man, 

WONG Hau Lun, YIM Ka Wing and 

YU Tin Wai. 
 

 

Problem 78.  If )2( ..., ,, 21 ≥nccc n  are 

real numbers such that 

=+++− ))(1( 22
2

2
1 ncccn L  

, )( 2
21 nccc +++ L  

show that either all of them are non- 

negative or all of them are non-positive.  

(Source: 1977 unused IMO problem 

proposed by Czechoslovakia) 

 

Solution.  CHOY Ting Pong (Ming Kei 

College, Form 6). 

Assume the conclusion is false.  Then 

there are at lease one negative and one 

positive numbers, say kccc ≤≤≤ L21  

nk cc ≤≤<≤ + L10  with 1 ≤  k < n, 

satisfying the condition.  Let w = 1c + ... 

+ kc , x = nk cc +++ L1 , y = ++L
2
1c  

2
kc  and z = 22

1 nk cc +++ L .  Expanding 
2w  and 2x  and applying the inequality 

,2
22

abba ≥+  we get ky 2w≥  and (n - 

k) z 2x≥ .  So 

+≥+−=+ kyzynxw ))(1()( 2  

22)( xwzkn +≥− . 

Simiplifying, we get ,0    ≥wx  

contradicting w < 0 < x. 
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Other commended solvers:  CHAN Siu 
Man (Ming Kei College, Form 6), 
FANG Wai Tong Louis (St. Mark's 
School, Form 6), KEE Wing Tao 
Wilton (PLK Centenary Li Shiu Chung 
Memorial College, Form 7), Gary NG 
Ka Wing (STFA Leung Kau Kui 
College, Form 6), TAM Siu Lung 
(Queen Elizabeth School, Form 6), 
WONG Hau Lun (STFA Leung Kau 
Kui College, Form 7) and YEUNG Kam 
Wah (Valtorta College, Form 7). 
 

Problem 79.  Which regular polygons 
can be obtained (and how) by cutting a 
cube with a plane?  (Source: 1967 unused 
IMO problem proposed by Italy) 

Solution.  FANG Wai Tong Louis (St. 

Mark's school, Form 6), KEE Wing Tao 

(PLK Centenary Li Shiu Chung 

Memorial School, Form 7), TAM Siu 

Lung (Queen Elizabeth School, Form 6) 

and YEUNG Kam Wah (Valtorta 

College, Form 7). 

 

Observe that if two sides of a polygon is 

on a face of the cube, then the whole 

polygon lies on the face.  Since a cube 

has 6 faces, only regular polygon with 3, 

4, 5 or 6 sides are possible.  Let the 

vertices of the bottom face of the cube be 

A, B, C, D and the vertices on the top face 

be A', B', C', D' with A' on top of A, B' on 

top of B and so on.  Then the plane 

through A, B', D' cuts an equilateral 

triangle.  The perpendicular bisecting 

plane to edge AA' cuts a square.  The 

plane through the mid-points of edges 

AB, BC, CC', C'D', D'A', A'A cuts a 

regular hexagon.  Finally, a regular 

pentagon is impossible, otherwise the 

five sides will be on five faces of the cube 

implying two of the sides are on parallel 

planes, but no two sides of a regular 

pentagon are parallel. 

 

Problem 80.  Is it possible to cover a 

plane with (infinitely many) circles in 

such a way  that  exactly 1998 circles 

pass through each point?  (Source: 

Spring 1988 Tournament of the Towns 

Problem) 

 

Solution.  Since no solution is received, 

we will present the modified solution of 

Professor Andy Liu (University of 

Alberta, Canada) to the problem. 

 

First  we solve the simpler problem 

where 1998 is replaced by 2.  Consider 

the lines y = k, where k is an integer, on 

the coordinate plane.  Consider every 

circle of diameter 1 tangent to a pair of 

these lines.  Every point (x, y) lies on 

exactly two of these circles.  (If y is an 

integer, then (x, y) lies on one circle on 

top of it and one below it.  If y is not an 

integer, then (x, y) lies on the  right half 

of one circle and on the left half of 

another.)  Now for the case 1998, repeat 

the argument above 998 times (using 

lines of the form y = k + (j /999) in the 

j-th time, j = 1, 2, ..., 998.) 
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Determine all positive integers k such 

that 

k
nd

nd
=

)(

)(
2

 

for some n. 

 

Problem 4.  Determine all pairs (a, b) of 

positive integers such that 2ab + b + 7 

divides baba ++
2 . 

 

Problem 5.  Let I be the incentre of 

triangle ABC.  Let the incircle of ABC 

touch the sides BC, CA and AB at K, L 

and M, respectively.  The line through B 

parallel to MK meets the lines LM and LK 

at R and S, respectively.  Prove that 

RIS∠ is acute. 

 

Problem 6.  Consider all functions f from 

the set N of all positive integers into itself 

satisfying 

22 ))(())(( tfssftf = , 

for all s and t in N.  Determine the least 

possible value of f (1998). 

 

 
 

Rearrangement Inequality 

(continued from page 2) 

So  
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yz
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xy

xy
A

222222

2

1
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Applying the RMS-AM inequality 

,2/)( 222 srsr +≥+  the right side is at 

least ,2/)( zyx ++  which is at least 

2/32/)(3 3/1
=xyz  by the AM-GM 

inequality. 

 
 

Power of Points Respect to Circles 

(continued from page 2) 
 

Solution.   For the three circles 

mentioned, the radical axes of the three 

pairs are lines AC, KN and BM.  (The 

centers are noncollinear because two of 

them are on  the perpendicular  bisector 

of  AC, but  not the third.)  So the axes 

will concur at  the  radical center P.  

Since ∠ PMN = ∠ BKN = ∠ NCA, it 

follows  that P, M, N, C are concyclic.  

By power of a point, BM ×  BP = BN ×  

BC = 22 rBO −  and PM ×  PB = PN ×  

PK = 22 rPO − , where r is  the  radius  

of the circle through A, C, N, K.  Then 

−=−=−
222 )( PMBMPMBPBOPO

.2BM  This implies OM is perpendicular 

to BM.  (See remarks below.) 

 

Remarks.  By coordinate  geometry, it 

can be shown that the locus of points X 

such that 22 BOPO −  = 22 BXPX −  is 

the line through O perpendicular to line 

BP.  This is a useful fact. 

 

Example 4.  (1997 Chinese Math 

Olympiad)  Let quadrilateral ABCD be 

inscribed in a circle.  Suppose lines AB 

and DC intersect at P and lines AD and 

BC intersect at Q. From Q, construct the 

tangents QE and QF to the circle, where 

E and F are the points of tangency.  Prove 

that P, E, F are collinear. 

 

Solution.  Let M be a point on PQ such 

that .ADCCMP ∠=∠  Then QMCD ,,,  

are concyclic and also, PMCB ,,,  are 

concyclic.  Let 1r be the radius of the 

circumcircle 1C  of ABCD and 1O be the 

center of 1C . By power of a point, 2
1PO  

PQPMPDPCr ×=×=−
2

1  and 2
1QO - 

.2
1 PQQMQBQCr ×=×=   Then 2

1PO  

,)( 222
1 QMPMPQQMPMQO −=−=−

which implies .1 PQMO ⊥   The circle  

2C  with 1QO  as diameter passes 

through FEM ,,  and intersects 1C  at 

., FE   If 2r  is the radius of 2C  and 2O  

is the center of 2C , then 

PMrPO =−
2

1
2
1  .2

2
2
2 rPOPQ −=×   So 

P lies on the radical axis of 1C , 2C , 

which is the line EF. 
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