
Olympiad Corner 
 
17th Balkan Mathematical Olympiad, 3-9 
May 2000: 

Time allowed: 4 hours 30 minutes 
 
Problem 1.  Find all the functions f : 
R →R with the property: 

,))(())()(( 2 yxfyfxxff +=+  
for any real numbers x and y. 
 
Problem 2.  Let ABC be a nonisosceles 
acute triangle and E be an interior point 
of the median AD, D ∈  (BC).  The point 
F is the orthogonal projection of the 
point E on the straight line BC.  Let M be 
an interior point of the segment EF, N 
and P be the orthogonal projections of 
the point M on the straight lines AC and 
AB, respectively.  Prove that the two 
straight lines containing the bisectrices 
of the angles PMN and PEN have no 
common point. 
 
Problem 3.  Find the maximum number 
of rectangles of the dimensions 2101× , 
which is possible to cut off from a 
rectangle of the dimensions 9050 × , by 
using cuts parallel to the edges of the 
initial rectangle. 

(continued on page 2) 

 
Near Christmas last year, I came across 
two beautiful geometry problems.  I was 
informed of the first problem by a reporter, 
who was covering President Jiang 
Zemin’s visit to Macau.  While talking to 
students and teachers, the President posed 
the following problem. 
 
For any pentagram ABCDE obtained by 
extending the sides of a pentagon FGHIJ, 
prove that neighboring pairs of the 
circumcircles of AJF∆ , BFG, CGH, DHI, 
EIJ intersect at 5 concyclic points K, L, M, 
N, O as in the figure. 
 

  
The second problem came a week later.  I 
read it in the Problems Section of the 
November issue of the American 
Mathematical Monthly.  It was proposed 
by Floor van Lamoen, Goes, The 
Netherlands.  Here is the problem. 

 
A triangle is divided by its three medians 
into 6 smaller triangles.  Show that the 
circumcenters of these smaller triangles 
lie on a circle. 
 
To get the readers appreciating these 
problems, here I will say, stop reading, try 
to work out these problems and come 
back to compare your solutions with those 
given below! 
 
Here is a guided tour of the solutions.  The 
first step in enjoying geometry problems 
is to draw accurate pictures with compass 
and ruler! 

 

 
Now we look at ways of getting solutions 
to these problems.  Both are concyclic 
problems with more than 4 points.  
Generally, to do this, we show the points 
are concyclic four at a time.  For example, 
in the first problem, if we can show K, L, 
M, N are concyclic, then by similar 
reasons, L, M, N, O will also be concyclic 
so that all five points lie on the circle 
passing through L, M, N. 
There are two common ways of showing 4 
points are concyclic.  One way is to show 
the sum of two opposite angles of the 
quadrilateral with the 4 points as vertices 
is 180 .  Another way is to use the 
converse of the intersecting chord 
theorem, which asserts that if lines WX 
and YZ intersect at P and PXPW ⋅  = 

PZPY ⋅ , then W, X, Y, Z are concyclic.  
(The equation implies PWY∆ , PZX are 
similar.  Then PWY∠ = PZX∠  and the 
conclusion follows.) 
For the first problem, as the points K, L, M, 
N, O are on the circumcirles, checking the 
sum of opposite angles equal 180  is 
likely to be easier as we can use the 
theorem about angles on the same segment 
to move the angles.  To show K, L, M, N 
are concyclic, we consider showing 

LMN∠  + .180=∠ LKN   Since the 
sides of LMN∠  are in two circumcircles, 
it may be wise to break it into two angles 
LMG and GMN.  Then the strategy is to 
change these to other angles closer to 

LKN∠ . 
Now LFALFGLMG ∠=∠−=∠ 180  = 

LKA∠ .  (So far, we are on track.  We 
bounced LMG∠  to LKA∠ , which shares 
a side with LKN∠ .)  Next, GMN∠  = 

GCN∠  = ACN∠ .  Putting these 
together, we have 
 LKNLMN ∠+∠  

LKNACNLKA ∠+∠+∠=  
 ACNAKN ∠+∠= . 
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Now if we can only show A, K, N, C are 
concyclic, then we will get 180  for the 
displayed equations above and we will 
finish.  However, life is not that easy.  This 
turned out to be the hard part.  If you draw 
the circle through A, C, N, then you see it 
goes through K as expected and 
surprisingly, it also goes through another 
point, I.  With this discovery, there is new 
hope.  Consider the arc through B, I, O.  
On the two sides of this arc, you can see 
there are corresponding point pairs (A, C), 
(K, N), (J, H), (F, G).  So to show A, K, N, 
C are concyclic, we can first try to show N 
is on the circle through A, C, I, then in that 
argument, if we interchange A with C, K, 
with N and so on, we should also get K is 
on the circle through C, A, I.  Then A, K, N, 
C (and I) will be concyclic and we will 
finish. 
 
Wishful thinking like this sometimes 
works!  Here are the details: 
    GCNACN ∠=∠ GHN∠−=180  

NIDNHD ∠=∠= AIN∠−=180 . 
So N is on the circle A, C, I.  
Interchanging letters, we get similarly K 
is on circle C, A, I.  So A, K, N, C (and I) 
are concyclic.  Therefore, K, L, M, N, O 
are indeed concyclic. 
(History.  My friend C.J. Lam did a search 
on the electronic database JSTOR and 
came across an article titled A Chain of 
Circles Associated with the 5-Line by J.W. 
Clawson published in the American 
Mathematical Monthly, volume 61, 
number 3 (March 1954), pages 161-166.  
There the problem was attributed to the 
nineteenth century geometer Miquel, who 
published the result in Liouville’s Journal 
de Mathematiques, volume 3 (1838), 
pages 485-487.  In that paper, Miquel 
proved his famous theorem that for four 
pairwise intersecting lines, taking three of 
the lines at a time and forming the circles 
through the three intersecting points, the 
four circles will always meet at a common 
point, which nowadays are referred to as 
the Miquel point.  The first problem was 
then deduced as a corollary of this Miquel 
theorem.) 
 
For the second problem, as the 6 
circumcenters of the smaller triangles are 
not on any circles that we can see 
immediately, so we may try to use the 
converse of the intersecting chord 

theorem.  For a triangle ABC, let G, D, E, 
F be the centroid, the midpoints of sides 
BC, CA, AB, respectively.  Let 1O , 2O , 

3O , 4O , 5O , 6O  be the circumcenters of 
triangles DBG, BFG, FAG, AEG, ECG, 
CDG, respectively. 
 

  
Well, should we draw the 6 circumcircles?  
It would make the picture complicated.  
The circles do not seem to be helpful at 
this early stage.  We give up on drawing 
the circles, but the circumcenters are 
important.  So at least we should locate 
them.  To locate the circumcenter of 

FAG∆ , for example, which two sides do 
we draw perpendicular bisectors?  Sides 
AG and FG are the choices because they 
are also the sides of the other small 
triangles, so we can save some work later.  
Trying this out, we discover these 
perpendicular bisectors produce many 
parallel lines and parallelograms!  
 
Since circumcenters are on perpendicular 
bisectors of chords, lines 3O 4O , 6O 1O  
are perpendicular bisectors of AG, GD, 
respectively.  So they are perpendicular to 
line AD and are 2

1 AD units apart.  

Similarly, the two lines 1O 2O , 4O 5O  

are perpendicular to line BE and are 2
1 BE 

units apart.  Aiming in showing 1O , 2O , 

3O , 4O  are concyclic by the converse of 
the intersecting chord theorem, let K be 
the intersection of lines 1O 2O , 3O 4O  
and L be the intersection of the lines 

4O 5O , 6O 1O .  Since the area of the 
parallelogram K 4O L 1O  is 

,
2
1

2
1

14 KOBEKOAD ⋅=⋅  

we get K 1O /K 4O  = AD/BE. 
 
Now that we get ratio of 1KO  and 4KO , 
we should examine 2KO  and 3KO .  
Trying to understand 32OKO∆ , we first 
find its angles.  Since ⊥2KO BG, 

⊥32OO FG and ⊥3KO AG, we see that 
32OKO∠  = BGF∠  and 23OKO∠  = 

FGA∠ .  Then 32 KOO∠  = DGB∠ .  At 

this point, you can see the angles of 
32OKO∆  equal the three angles with 

vertices at G on the left side of segment 
AD. 
 
Now we try to put these three angles 
together in another way to form another 
triangle.  Let M be the point on line AG 
such that MC is parallel to BG.  Since 

MCG∠  = BGF∠ , MGC∠  = FGA∠  
(and GMC∠  = , BGD∠ ) we see 

32OKO∆ , MCG are similar. 
 
The sides of MCG∆  are easy to compute 
in term of AD, BE, CF.  As AD and BE 
occurred in the ratio of 1KO  and 4KO , 
this is just what we need!  Observe that 

MCD∆ , GBD are congruent since 
GBDMCD ∠=∠  (by MC parallel to GB), 

CD = BD and .GDBMDC ∠=∠   So  

MG = 2GD = 
3
2 AD, 

MC = GB = 
3
2 BE 

(and CG = 3
2 CF.  Incidentally, this means 

the three medians of a triangle can be put 
together to form a triangle!  Actually, this 
is well-known and was the reason we 
considered MCG∆ .)  We have 

23 / KOKO  = MG/MC = AD/BE = 

41 / KOKO . 
 
So 21 KOKO ⋅  = 43 KOKO ⋅ , which 
implies 1O , 2O , 3O , 4O  are concyclic.  
Similarly, we see that 2O , 3O , 4O , 5O  
concyclic (using the parallelogram formed 
by the lines 21OO , 54OO , 32OO , 65OO  
instead) and 3O , 4O , 5O , 6O  are 
concyclic. 
 

 
 
Olympiad Corner 

(continued from page 1) 

Problem 4.  We say that a positive 
integer r is a power, if it has the form r = 

st  where t and s are integers, 2≥t , 
2≥s .  Show that for any positive integer 

n there exists a set A of positive integers, 
which satisfies the conditions: 
1. A has n elements; 
2. any element of A is a power; 
3. for any 1r , 2r , …, )2( nkrk ≤≤  

from A the number 
k

rrr k+++ 21  

is a power. 
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Problem Corner 
 
We welcome readers to submit their 
solutions to the problems posed below 
for publication consideration.  Solutions 
should be preceded by the solver’s name, 
home (or email) address and school 
affiliation.  Please send submissions to 
Dr. Kin Y. Li, Department of 
Mathematics, Hong Kong University of 
Science & Technology, Clear Water Bay, 
Kowloon.  The deadline for submitting 
solutions is April 15, 2001. 
 
Problem 121.  Prove that any integer 
greater than or equal to 7 can be written 
as a sum of two relatively prime integers, 
both greater than 1. 
(Two integers are relative prime if they 
share no common positive divisor other 
than 1.  For example, 22 and 15 are 
relatively prime, and thus 37 = 22 + 15 
represents the number 37 in the desired 
way.)  (Source: Second Bay Area 
Mathematical Olympaid) 
 
Problem 122.  Prove that the product of 
the lengths of the three angle bisectors of 
a triangle is less than the product of the 
lengths of the three sides.  (Source: 1957 
Shanghai Junior High School Math 
Competition) 
 
Problem 123.  Show that every convex 
quadrilateral with area 1 can be covered 
by some triangle of area at most 2.  
(Source: 1989 Wuhu City Math 
Competition) 
 
Problem 124.  Find the least integer n 
such that among every n distinct numbers 

1a , 2a , …, na , chosen from [1, 1000], 
there always exist ji aa  ,  such that 

3 310 jiji aaaa +<−< . 

(Source: 1990 Chinese Team Training 
Test) 
 
Problem 125.  Prove that 

89tan5tan3tan1tan 2222 ++++
is an integer. 
 

***************** 
Solutions 

***************** 

Problem 116.  Show that the interior of a 
convex quadrilateral with area A and 
perimeter P contains a circle of radius 

A/P. 
 
Solution 1.  CHAO Khek Lun (St. Paul’s 
College, Form 6).  
 
Draw four rectangles on the sides of the 
quadrilateral and each has height A/P 
pointing inward.  The sum of the areas of 
the rectangles is A.  Since at least one 
interior angle of the quadrilateral is less 
than 180 , at least two of the rectangles 
will overlap.  So the union of the four 
rectangular regions does not cover the 
interior of the quadrilateral.  For any point 
in the interior of the quadrilateral not 
covered by the rectangles, the distance 
between the point and any side of the 
quadrilateral is greater than A/P.  So we 
can draw a desired circle with that point as 
center. 
 
Solution 2.  CHUNG Tat Chi (Queen 
Elizabeth School, Form 4) and LEUNG 
Wai Ying (Queen Elizabeth School, Form 
6). 
 
Let BCDE be a quadrilateral with area A 
and perimeter P.  One of the diagonal, say 
BD is inside the quadrilateral.  Then either 

BCD∆  or BED∆  will have an area 
greater than or equal to A/2.  Suppose this 
is BCD∆ .  Then BCDE contains the 
incircle of BCD∆ , which has a radius of 

 
DBCDBC

BCD
++
][2  

EBDECDBC
BCD

+++
> ][2  

 ,
P
A≥  

where the brackets denote area.  Hence, it 
contains a circle of radius A/P. 
Comment:  Both solutions do not need the 
convexity assumption. 
 
Problem 117.  The lengths of the sides of 
a quadrilateral are positive integers.  The 
length of each side divides the sum of the 
other three lengths.  Prove that two of the 
sides have the same length. 
 
Solution.  CHAO Khek Lun (St. Paul’s 
College, Form 6) and LEUNG Wai Ying 
(Queen Elizabeth School, Form 6). 
 
Suppose the sides are a, b, c, d with a < b 
< c < d.  Since d < a + b + c < 3d and d 
divides a + b + c, we have a + b + c = 2d.  
Now each of a, b, c divides a + b + c + d 
= 3d.  Let x = 3d/a, y = 3d/b and z = 3d/c.  
Then a < b < c < d implies x > y > z > 3.  
So z ≥ 4, y ≥ 5, x ≥ 6.  Then 

,2
4

3
5

3
6

32 ddddcbad <++≤++=  

a contradiction.  Therefore, two of the 
sides are equal. 
 
Problem 118.  Let R be the real numbers.  
Find all functions f : R →  R such that for 
all real numbers x and y, 

f (xf (y) + x) = xy + f (x). 
 
Solution 1.  LEUNG Wai Ying (Queen 
Elizabeth School, Form 6). 
 
Putting x = 1, y = -1 – f (1) and letting a = 
f (y) + 1, we get 

f (a) = f ( f (y) + 1) = y + f (1) = -1. 
Putting y = a and letting b = f (0), we get 

b = f (xf (a) + x) = ax + f (x), 
so f(x) = -ax + b.  Putting this into the 
equation, we have 

.2 baxxybaxabxxya +−=+−−  

Equating coefficients, we get 1±=a  and 
b = 0, so f (x) = x or f (x) = -x.  We can 
easily check both are solutions. 
 
Solution 2.  LEE Kai Seng (HKUST). 
Setting x = 1, we get 

).1()1)(( fyyff +=+  

For every real number a, let y = a – f (1), 
then f (f (y) + 1) = a and f is surjective.  In 
particular, there is b such that f (b) = -1.  
Also, if f (c) = f (d), then 

)1)(()1( +=+ cfffc  
 )1)(( += dff  
 ).1(fd +=  
So c = d and f is injective.  Taking x = 1, y 
= 0, we get f (f (0) +1) = f (1).  Since f is 
injective, we get f (0) = 0. 
For ,0≠x  let xxfy /)(−= , then 

).0(0))(( fxyxff ==+  
By injectivity, we get xf (y) + x = 0. Then 

)(1)()/)(( bfyfxxff =−==−  
and so –f (x)/x = b for every .0≠x   That 
is, f (x) = -bx.  Putting this into the given 
equation, we find f (x) = x or f (x) = -x, 
which are checked to be solutions. 
 
Other commended solvers:  CHAO Khek 
Lun (St. Paul’s College, Form 6) and NG 
Ka Chun Bartholomew (Queen 
Elizabeth School, Form 6). 
 
Problem 119.  A circle with center O is 
internally tangent to two circles inside it 
at points S and T.  Suppose the two 
circles inside intersect at M and N with N 
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closer to ST.  Show that OM ⊥ MN if and 
only if S, N, T are collinear.  (Source: 
1997 Chinese Senior High Math 
Competition) 
 
Solution.  LEUNG Wai Ying (Queen 
Elizabeth School, Form 6). 
 

  
Consider the tangent lines at S and at T.  
(Suppose they are parallel, then S, O, T 
will be collinear so that M and N will be 
equidistant from ST, contradicting N is 
closer to ST.)  Let the tangent lines meet at 
K, then OTKOSK ∠==∠ 90  implies O, 
S, K, T lie on a circle with diameter OK.  
Also, 22 KTKS =  implies K is on the 
radical axis MN of the two inside circles.  
So M, N, K are collinear. 
If S, N, T are collinear, then SMT∠  = 

TMNSMN ∠+∠  = KTNNSK ∠+∠  = 
SKT∠−180 .  So M, S, K, T, O are 

concyclic.  Then OMN∠  = OMK∠  = 
OSK∠  = 90 . 

Conversely, if MNOM ⊥ , then OMK∠  
= OSK∠=90  implies M, S, K, T, O are 
concyclic.  Then 
  SKT∠  = SMT∠−180  

 = TMNSMN ∠−∠−180  

 = .180 KTNNSK ∠−∠−  
Thus, SKTNSKTNS ∠−∠−=∠ 360  - 

180=∠ KTN .  Therefore, S, N, T are 
collinear. 
Comments:  For the meaning of radical 
axis, we refer the readers to pages 2 and 4 
of Math Excalibur, vol. 4, no. 3 and the 
corrections on page 4 of Math Excalibur, 
vol. 4, no. 4. 
 
Other commended solvers:  CHAO Khek 
Lun (St. Paul’s College, Form 6). 
 
Problem 120.  Twenty-eight integers are 
chosen from the interval [104, 208].  
Show that there exist two of them having 
a common prime divisor. 
 

Solution 1.  CHAO Khek Lun (St. Paul’s 
College, Form 6), CHAU Suk Ling 
(Queen Elizabeth School, Form 6) and 
CHUNG Tat Chi (Queen Elizabeth 
School, Form 4). 
 
Applying the inclusion-exclusion 
principle, we see there are 82 integers on 
[104, 208] that are divisible by 2, 3, 5 or 
7.  There remain 23 other integers on the 
interval.  If 28 integers are chosen from 
the interval, at least 28 – 23 = 5 are 
among the 82 integers that are divisible 
by 2, 3, 5 or 7.  So there will exist two 
that are both divisible by 2, 3, 5 or 7. 
 
Solution 2.  CHAN Yun Hung (Carmel 
Divine Grace Foundation Secondary 
School, Form 4), KWOK Sze Ming 
(Queen Elizabeth School, Form 5), LAM 
Shek Ming (La Salle College, Form 5), 
LEUNG Wai Ying (Queen Elizabeth 
School, Form 6), WONG Tak Wai Alan 
(University of Toronto) and WONG 
Wing Hong (La Salle College, Form 3).  
 
There are 19 prime numbers on the 
interval.  The remaining 86 integers on 
the interval are all divisible by at least 
one of the prime numbers 2, 3, 5, 7, 11 
and 13 since 13 is the largest prime less 
than or equal to 208 .  So every number 
on the interval is a multiple of one of 
these 25 primes.  Hence, among any 26 
integers on the interval at least two will 
have a common prime divisor. 
 

 
 
A Proof of the Majorization Inequality 

Kin Y. Li 
Quite a few readers would like to see a 
proof of the majorization inequality, 
which was discussed in the last issue of 
the Mathematical Excalibur.  Below we 
will present a proof.  We will first make 
one observation. 
Lemma.  Let a < c < b and f  be convex 
on an interval I with a, b, c on I.  Then the 
following are true: 

ab
afbf

ac
afcf

−
−≤

−
− )()()()(  

and 

ab
afbf

cb
cfbf

−
−≤

−
− )()()()( . 

Proof.  Since a < c < b, we have c = (1 – 
t)a + tb for some t ∈ (0, 1).  Solving for t, 
we get t = (c – a)/(b – a).  Since f is 
convex on I,  

f (c) ≤  (1 – t) f (a) + t f (b) 

= ),()( bf
ab
acaf

ab
cb

−
−+

−
−  

which is what we will get if we solve for 
)(cf  in the two inequalities in the 

statement of the lemma. 
In brief the lemma asserts that the slopes 
of chords are increasing as the chords are 
moving to the right.  Now we are ready to 
proof the majorization inequality. 
Suppose 

). ..., , ,() ..., , ,( 2121 nn yyyxxx  
Since 1+≥ ii xx  and 1+≥ ii yy  for i = 1, 
2, …, n – 1, it follows from the lemma 
that the slopes 

ii

ii
i yx

yfxfm
−
−

=
)()(

 

satisfy 1+≥ ii mm  for 1 ≤  i ≤  n – 1.  

(For example, if iiii xxyy ≤≤≤ ++ 11 , 
then applying the lemma twice, we get 

11

11
1

)()(

++

++
+ −

−
=

ii

ii
i yx

yfxfm  

ii

ii

yx
yfxf

−
−

≤
+

+

1

1 )()(
 

i
ii

ii m
yx

yfxf
=

−
−

≤
)()(

 

and similarly for the other ways 1+iy , iy , 

1+ix , ix  are distributed.) 
 
For k = 1, 2, …, n, let  

21 xxX k +=  kx++  
and 

kk yyyY +++= 21 . 
Since kk YX ≥  for k = 1, 2, …, n – 1 and 

nn YX = , we get 

,0))((
1

1∑
=

+ ≥−−
n

k
kkkk mmYX  

where we set 01 =+nm  for convenience.  
Expanding the sum, grouping the terms 
involving the same km ’s and letting 

0X = 0 = 0Y , we get 

,0)(
1

11 ≥+−−∑
=

−−

n

k
kkkkk mYYXX  

which is the same as 

∑
=

≥−
n

k
kkk myx

1
.0)(  

Since ),()()( kkkkk yfxfmyx −=−  
we get 

∑
=

≥−
n

k
kkk myfxf

1
.0))()((  

Transferring the )( kyf  terms to the 
right, we get the majorization inequality. 

Mathematical Excalibur, Vol. 6, No. 1, Jan 01 – Mar 01 Page 4 
 


