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Problem 1.  At 12:00 noon, Anne, Beth 
and Carmen begin running laps around a 
circular track of length three hundred 
meters, all starting from the same point 
on the track.  Each jogger maintains a 
constant speed in one of the two possible 
directions for an indefinite period of time.  
Show that if Anne’s speed is different 
from the other two speeds, then at some 
later time Anne will be at least one 
hundred meters from each of the other 
runners.  (Here, distance is measured 
along the shorter of the two arcs 
separating two runners). 
 
Problem 2.  A permutation of the 
integers 1901, 1902, …, 2000 is a 
sequence 1a , 2a , …, 100a  in which 
each of those integers appears exactly 
once.  Given such a permutation, we form 
the sequence of partial sums 

11 as = , 212 aas += , 
. ..., , 100211003213 aaasaaas +++=++=

 
(continued on page 4) 

When we write down a number, it is 
understood that the number is written in 
base 10.  We learn many interesting facts 
at a very young age.  Some of these can 
be easily explained in terms of base 10 
representation of a number.  Here is an 
example. 
 
Example 1.  Show that a number is 
divisible by 9 if and only if the sum of its 
digits is divisible by 9.  How about 
divisibility by 11? 
 
Solution.  Let 1010 1ddM m

m ++=  
, 0d+  where id  = 0, 1, 2, …, 9.  The 

binomial theorem tells us kk )19(10 +=  
.19 += kN  So 

 

01 )19()19( ddNdM mm +++++=  
).()(9 011 ddddNd mmm ++++++=

 
Therefore, M is a multiple of 9 if and 
only if 01 dddm +++  is a multiple of 
9. 
 
Similarly, we have .)1(1110 k

k
k N −+′=   

So M is divisible by 11 if and only if 

01)1( dddm
m +−+−  is divisible by 

11. 
 
Remarks.  In fact, we can also see that the 
remainder when M is divided by 9 is the 
same as the remainder when the sum of 
the digits of M is divided by 9.  Recall the 
notation ba ≡  (mod c) means a and b 
have the same remainder when divided 
by c.  So we have 01 dddM m +++≡  
(mod 9). 
 
The following is an IMO problem that 
can be solved using the above remarks. 
 
Example 2. (1975 IMO)  Let A be the sum 
of the decimal digits of ,44444444  and B 
be the sum of the decimal digits of A.  Find 
the sum of the decimal digits of B. 
 
Solution.  Since 444454444 )10(4444 <  = 

,1022220  so .199980922220 =×<A   
Then 46591 =×+<B  and the sum of 
the decimal digits of B is at most 3+9=12.  
Now 74444 ≡  (mod 9) and 34373 =  

1≡  (mod 9) imply 144443 ≡  (mod 9).  
Then 74444)4444(4444 148134444 ≡=  
(mod 9).  By the remarks above, A, B and 
the sum of the decimal digits of B also 
have remainder 7 when divided by 9.  So 
the sum of the decimal digits of B being 
at most 12 must be 7. 
Although base 10 representations are 
common, numbers expressed in other 
bases are sometimes useful in solving 
problems, for example, base 2 is common.  
Here are a few examples using other 
bases. 
 
Example 3. (A Magic Trick)  A magician 
asks you to look at four cards.  On the first 
card are the numbers 1, 3, 5, 7, 9, 11, 13, 
15; on the second card are the numbers 2, 
3, 6, 7, 10, 11, 14, 15; on the third card are 
the numbers 4, 5, 6, 7, 12, 13, 14, 15; on 
the fourth card are the numbers 8, 9, 10, 
11, 12, 13, 14, 15.  He then asks you to 
pick a number you saw in one of these 
cards and hand him all the cards that have 
that number on them.  Instantly he knows 
the number.  Why? 
 
Solution.  For n = 1, 2, 3, 4, the numbers 
on the n-th card have the common feature 
that their n-th digits from the end in base 2 
representation are equal to 1.  So you are 
handing the base 2 representation of your 
number to the magician.  As the numbers 
are less than ,24  he gets your number 
easily. 
 
Remarks.  A variation of this problem is 
the following.  A positive integer less than 

42  is picked at random.  What is the least 
number of yes-no questions you can ask 
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that always allow you to know the number?  
Four questions are enough as you can ask 
if each of the four digits of the number in 
base 2 is 1 or not.  Three questions are not 
enough as there are 15 numbers and three 
questions can only provide 823 =  
different yes-no combinations. 
 
Example 4.  (Bachet’s Weight Problem)  
Give a set of distinct integral weights that 
allowed you to measure any object having 
weight 40 , ,3 ,2 ,1=n  on a balance.  
Can you do it with a set of no more than 
four distinct integral weights? 
 
Solution.  Since the numbers 1 to 40 in 
base 2 have at most 6 digits, we can do it 
with the set 1, 2, 4, 8, 16, 32.  To get a set 
with fewer weights, we observe that we 
can put weights from this set on both sides 
of the balance!  Consider the set of 
weights 1, 3, 9, 27.  For example to 
determine an object with weight 2, we can 
put it with a weight of 1 on one side to 
balance a weight of 3 on the other side.  
Note the sum of 1, 3, 9, 27 is 40.  For any 
integer n between 1 and 40, we can write it 
in base 3.  If the digit 2 appears, change it 
to 13−  so that n can be written as a 
unique sum and difference of 1, 3, 9, 27.  
For example, 22 = 92 ⋅  + 3 + 1 = (3 – 1)9 
+ 3 + 1 = 27 – 9 + 3 + 1 suggests we put 
the weights of 22 with 9 on one side and 
the weights of 27, 3, 1 on the other side. 
 
Example 5. (1983 IMO)  Can you choose 
1983 pairwise distinct nonnegative 
integers less than 510 such that no three 
are in arithmetic progression? 
 
Solution.  Start with 0, 1 and at each step 
add the smallest integer which is not in 
arithmetic progression with any two 
preceding terms.  We get 0, 1, 3, 4, 9, 10, 
12, 13, 27, 18, … .  In base 3, this 
sequence is  

... ,1001 ,1000 ,111 ,110 ,101 ,100 ,11 ,10 ,1 ,0
 
(Note this sequence is the nonnegative 
integers in base 2.)  Since 1982 in base 2 is 
11110111110, so switching this from base 
3 to base 10, we get the 1983th term of the 
sequence is .1087843 5<   To see this 
sequence works, suppose x, y, z with x <y 
< z are three terms of the sequence in 
arithmetic progression.  Consider the 

rightmost digit in base 3 where x differs 
from y, then that digit for z is a 2, a 
contradiction. 
 
Example 6.  Let ][r  be the greatest 
integer less than or equal to r.  Solve the 
equation  

]8[]4[]2[][ xxxx +++  

.12345]32[]16[ =++ xx   
Solution.  If x is a solution, then since 

,][1 rrr ≤<−  we have 63x – 6 < 12345 
.63x≤   It follows that .196195 << x   

Now write the number x in base 2 as 
,.11000011 abcde  where the digits 

 , , , , , edcba  are 0 or 1.  Substituting 
this into the equation, we will get 12285 + 
31a + 15b + 7c + 3d + e = 12345.  Then 
31a + 15b + 7c + 3d + e = 60, which is 
impossible as the left side is at most 31 + 
15 + 7 + 3 + 1 = 57.  Therefore, the 
equation has no solution. 
 
Example 7. (Proposed by Romania for 
1985 IMO)  Show that the sequence }{ na  
defined by ]2[nan =  for n = 1, 2, 3, … 
(where the brackets denote the greatest 
integer function) contains an infinite 
number of integral powers of 2. 
 

Solution.  Write 2  in base 2 as 
,. 3210 bbbb  where each 0=ib  or 1.  

Since 2  is irrational, there are infinitely 
many .1=kb   If ,1=kb  then in base 2, 

kk
k bbb .22 10

1
−

− = .  Let m = 
],22[ 1−k  then  

 

.
2
122]22[122 111 −<=<− −−− kkk m

Multiplying by 2  and adding ,2  we 

get .
2
222)1(2 +<+< kk m   Then 

.2]2)1[( km =+  
 
Example 8. (American Mathematical 
Monthly, Problem 2486)  Let p be an odd 
prime number.  For any positive integer k, 
show that there exists a positive integer m 
such that the rightmost k digits of ,2m  
when expressed in the base p, are all 1's. 
 
Solution.  We prove by induction on k.  
For ,1=k  take .1=m   Next, suppose 

2m  in base p, ends in k 1's, i.e.  
12 1 −+++= kppm ).( ++ kap  

This implies m is not divisible by p.  Let 
gcd stand for greatest common divisor (or 
highest common factor).  Then gcd(m, p) 
= 1.  Now 

kkk pcmcpmcpm 2222 2)( ++=+  

.)2(1 1 ++++++= − kk pmcapp  

Since ,1),2gcd( =pm  there is a positive 
integer c such that acm −≡1)2(  (mod p).  
This implies mca 2+  is of the form 

Np+1  and so 2)( kcpm +  will end in at 
least )1( +k  1's as required. 
 
Example 9.  Determine which binomial 

coefficients 
)!(!

!
rnr

nCn
r −

=  are odd. 
 
Solution.  We remark that modulo 
arithmetic may be extended to 
polynomials with integer coefficients.  For 
example, ≡++=+ 22 21)1( xxx  21 x+  
(mod 2).  If 1aan m ++= , where the 

ia ’s are distinct powers of 2.  We have 
kk

xx 22 1)1( +≡+  (mod 2) by induction 
on k and so  

)1()1()1( 1aan xxx m ++≡+  (mod 2).  
The binomial coefficient n

rC  is odd if 
and only if the coefficient of rx  in 

)1()1( 1aa xx m ++  is 1, which is 
equivalent to r being 0 or a sum of one or 
more of the ia ’s.  For example, if 

,141621 ++==n  then n
rC  is odd for r 

= 0, 1, 4, 5, 16, 17, 20, 21 only. 
 
Example 10. (1996 USAMO)  Determine 
(with proof) whether there is a subset X of 
the integers with the following property: 
for any integer n there is exactly one 
solution of nba =+ 2  with ., Xba ∈   
This is a difficult problem.  Here we will 
try to lead the reader to a solution.  For a 
problem that we cannot solve, we can try 
to change it to an easier problem.  How 
about changing the problem to positive 
integers, instead of integers?  At least we 
do not have to worry about negative 
integers.  That is still not too obvious how 
to proceed.  So can we change it to an even 
simpler problem?  How about changing 2 
to 10? 
 
 

(continued on page 4) 
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Problem Corner 
 
We welcome readers to submit their 
solutions to the problems posed below 
for publication consideration.  Solutions 
should be preceded by the solver’s name, 
home (or email) address and school 
affiliation.  Please send submissions to 
Dr. Kin Y. Li, Department of 
Mathematics, Hong Kong University of 
Science & Technology, Clear Water Bay, 
Kowloon.  The deadline for submitting 
solutions is June 30, 2001. 
 

Problem 126.  Prove that every integer 
can be expressed in the form 

222 5zyx −+ , where x, y, z are integers. 
 
Problem 127.  For positive real numbers 
a, b, c with a + b + c = abc, show that 

2
3

1

1

1

1

1

1
222

≤
+

+
+

+
+ cba

, 

and determine when equality occurs. 
(Source: 1998 South Korean Math 
Olympiad) 
 
Problem 128.  Let M be a point on 
segment AB.  Let AMCD, BEHM be 
squares on the same side of AB.  Let the 
circumcircles of these squares intersect 
at M and N.  Show that B, N, C are 
collinear and H is the orthocenter of 

.ABC∆   (Source: 1979 Henan Province 
Math Competition) 
 
Problem 129.  If f(x) is a polynomial of 
degree 2m+1 with integral coefficients 
for which there are 2m+1 integers 

1221  , , , +mkkk  such that 1)( =ikf  for 
,12 , ,2 ,1 += mi  prove that f(x) is not 

the product of two nonconstant 
polynomials with integral coefficients. 
 
Problem 130.  Prove that for each 
positive integer n, there exists a circle in 
the xy-plane which contains exactly n 
lattice points in its interior, where a 
lattice point is a point with integral 
coordinates.  (Source: H. Steinhaus, 
Zadanie 498, Matematyka 10 (1957), p. 
58) 
 

***************** 
Solutions 

***************** 

Problem 121.  Prove that any integer 
greater than or equal to 7 can be written 
as a sum of two relatively prime integers, 
both greater than 1. 
(Two integers are relative prime if they 
share no common positive divisor other 
than 1.  For example, 22 and 15 are 
relatively prime, and thus 37 = 22 + 15 
represents the number 37 in the desired 
way.)  (Source: Second Bay Area 
Mathematical Olympaid) 
 
Solution.  CHAO Khek Lun Harold (St. 
Paul’s College, Form 6), CHIU Yik Yin 
(St. Joseph’s Anglo-Chinese School, 
Form 5), CHONG Fan Fei (Queen’s 
College, Form 4), CHUNG Tat Chi 
(Queen Elizabeth School, Form 4), LAW 
Siu Lun (Ming Kei College, Form 6), NG 
Cheuk Chi (Tsuen Wan Public Ho Chuen 
Yiu Memorial College), WONG Wing 
Hong (La Salle College, Form 3) & 
YEUNG Kai Sing (La Salle College, 
Form 4). 
 
For an integer ,7≥n  n is either of the 
form 2j + 1 (j > 2) or 4k(k > 1) or 4k + 2(k 
> 1).  If n = 2j + 1, then j and j + 1 are 
relatively prime and n = j + (j + 1).  If n = 
4k, then 2k - 1 (>1) and 2k + 1 are 
relatively prime and n = (2k - 1) + (2k + 1).  
If n = 4k + 2, then 2k - 1 and 2k + 3 are 
relatively prime and n = (2k - 1) + (2k + 
1). 
 
Other commended solvers: HON Chin 
Wing (Pui Ching Middle School, Form 6), 
LEUNG Wai Ying (Queen Elizabeth 
School, Form 6), NG Ka Chun 
Bartholomew (Queen Elizabeth School, 
Form 6) & WONG Tak Wai Alan 
(University of Toronto). 
 
Problem 122.  Prove that the product of 
the lengths of the three angle bisectors of a 
triangle is less than the product of the 
lengths of the three sides. (Source:  1957 
Shanghai Junior High School Math 
Competition). 
 
Solution.  YEUNG Kai Sing (La Salle 
College, Form 4). 

 
 
 
 
 
 

 
 
 

 
 
Let AD, BE and CF be the angle bisectors 
of ABC∆ , where D is on BC, E is on CA 
and F is on AB.  Since ADC∠  = ABD∠  
+ BAD∠  > ,ABD∠  there is a point K on 
CA such that .ABDADK ∠=∠   Then 

ABD∆  is similar to ADK∆ .  So AB/AD 
= AD/AK.  Then 2AD  = AKAB ⋅  < 

CAAB ⋅ .  Similarly, ABBCBE ⋅<2 and 
.2 BCCACF ⋅<   Multiplying these 

in-equalities and taking square roots, we 
get CABCABCFBEAD ⋅⋅<⋅⋅ . 
 
Other commended solvers: CHAO 
Khek Lun Harold (St. Paul’s College, 
Form 6), CHIU Yik Yin (St. Joseph’s 
Anglo-Chinese School, Form 5), HON 
Chin Wing (Pui Ching Middle School, 
Form 6) & LEUNG Wai Ying (Queen 
Elizabeth School, Form 6). 
 
Problem 123.  Show that every convex 
quadrilateral with area 1 can be covered 
by some triangle of area at most 2.  
(Source: 1989 Wuhu City Math 
Competition) 
 
Solution.  CHAO Khek Lun Harold (St. 
Paul’s College, Form 6), CHUNG Tat 
Chi (Queen Elizabeth School, Form 4) & 
LEUNG Wai Ying (Queen Elizabeth 
School, Form 6). 
 

 
 
 
 
 

 
 
 
 
 

Let ABCD be a convex quadrilateral with 
area 1.  Let AC meet BD at E.  Without 
loss of generality, suppose .ECAE ≥   
Construct ,AFG∆  where lines AB and 
AD meet the line parallel to BD through 
C at F and G respectively.  Then ABE∆  
is similar to .AFC∆   Now ECAE ≥  
implies .BFAB ≥   Let [XY Z] denote 
the area of polygon ,ZXY  then [ABC] 
≥  [FBC].  Similarly, [ADC] ≥  [GDC].  
Since [ABC] + [ADC] = [ABCD] = 1, 
so [AFG] = [ABCD] + [FBC] + [GDC] 
≤  2[ABCD] = 2 and AFG∆  covers 
ABCD. 
 
Problem 124.  Find the least integer n 
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such that among every n distinct numbers 
, , , , 21 naaa  chosen from [1,1000], 

there always exist ji aa  ,  such that 
.310 3 jiji aaaa +<−<  

(Source: 1990 Chinese Team Training 
Test) 
 
Solution. CHAO Khek Lun Harold (St. 
Paul’s College, Form 6), CHUNG Tat 
Chi (Queen Elizabeth School, Form 4) & 
LEUNG Wai Ying (Queen Elizabeth 
School, Form 6). 
 

For ,10≤n  let 3iai =  ). , ,2 ,1( ni =  
Then the inequality cannot hold since 

330 ji −<  implies 1≥− ji  and so 
33 ji −  = 3)( ji −  + )(3 jiij −  ij31+≥ .  

For n = 11, divide [1,1000] into intervals 

])1( ,1[ 33 ++ kk  for k = 0, 1, …, 9.  By 
pigeonhole principle, among any 11 
distinct numbers 1121  , , , aaa  in [1, 
1000], there always exist ji aa  , , say 

ji aa > , in the same interval. Let 

3 iax =  and 3 jay = , then 0 < x - y < 1 

and 0 < ji aa −  = 33 yx −  = 3)( yx −  + 

)(3 yxxy −  < 1 + 3xy = 1 + .33 jiaa  
 
 
Other commended solvers: NG Cheuk 
Chi (Tsuen Wan Public Ho Chuen Yiu 
Memorial College), NG Ka Chun 
Bartholomew (Queen Elizabeth School, 
Form 6), WONG Wing Hong (La Salle 
College, Form 3) & YEUNG Kai Sing 
(La Salle College, Form 4). 
 
Problem 125.  Prove that 

89tan5tan3tan1tan 2222 ++++  
is an integer. 
 
Solution.  CHAO Khek Lun (St. Paul’s 
College, Form 6). 
 
For ,89 , ,5 ,3 ,1=θ  we have θcos  

0≠  and 090cos =θ .  By de Moivre’s 
theorem, θθ 90sin  90cos i+  = +θ(cos  

90)sin θi .  Taking the real part of both 
sides, we get  

∑
=

−−=
45

0

229090
2 sincos)1(0

k

kk
k

k C θθ . 

Dividing by θ90cos  on both sides and 
letting θ2tan=x , we get 

∑
=

−=
45

0

90
2)1(0

k

k
k

k xC . 

So 89tan , ,5tan ,3tan ,1tan 2222  
are the 45 roots of this equation.  
Therefore, their sum is .400590

88 =C  
 

 
Olympiad Corner 

(continued from page 1) 

How many of these permutations will 
have no terms of the sequence 1s , …, 

100s  divisible by three? 
 
Problem 3.  Let A = ) , , ,( 200021 aaa  be 
a sequence of integers each lying in the 
interval [-1000, 1000].  Suppose that the 
entries in A sum to 1.  Show that some 
nonempty subsequence of A sums to 
zero. 
 
Problem 4.  Let ABCD be a convex 
quadrilateral with 

ADBCBD ∠=∠ 2 , 
  ABD∠  = CDB∠2  
and       AB = CB. 

Prove that AD = CD. 
 
Problem 5.  Suppose that the real 
numbers 10021  , , , aaa  satisfy 

 ≥≥≥≥ 10021 aaa  0, 
  10021 ≤+ aa  

and      .10010043 ≤+++ aaa  

Determine the maximum possible value 
of 2

100
2
2

2
1 aaa +++ , and find all 

possible sequences 10021  , , , aaa  which 
achieve this maximum. 
 

 
 
Base n Representations 

(continued from page 2)  
Now try an example, say n = 12345.  We 
can write n in more than one ways in the 
form .10ba +   Remember we want a, b 
to be unique in the set X.  Now for b in X, 

b10  will shift the digits of b to the left 
one space and fill the last digit with a 0.  
Now we can try writing n = 12345 = 
10305 + 10(204).  So if we take X to be 
the positive integers whose even position 
digits from the end are 0, then the 
problem will be solved for n = a + 10b.  
How about ban 2+= ?  If the reader 
examines the reasoning in the case 

,10ba +  it is easy to see the success 

comes from separating the digits and 
observing that multiplying by 10 is a 
shifting operation in base 10.  So for 

,2ba +  we take X to be the set of 
positive integers whose base 2 even 
position digits from the end are 0, then 
the problem is solved for positive 
integers. 
How about the original problem with 
integers?  It is tempting to let X be the set 
of positive or negative integers whose 
base 2 even position digits from the end 
are 0.  It does not work as the example 1 
+ 12 ⋅  = 3 = 5 + 2 ( -1) shows uniqueness 
fails.  Now what other ways can we 
describe the set X we used in the last 
paragraph?  Note it is also the set of 
positive integers whose base 4 
representations have only digits 0 or 1.  
How can we take care of uniqueness and 
negative integers at the same time?  One 
idea that comes close is the Bachet 
weights. 
The brilliant idea in the official solution 
of the 1996 USAMO is do things in base 

).4(−   That is, show every integer has a 

unique representation as ,)4(
0

ik

i
ic −∑

=
 

where each ic  = 0, 1, 2 or 3 and .0≠kc  
Then let X be the set of integers whose 
base )4(−  representations have only 

0=ic  or 1 will solve the problem. 

To show that an integer n has a base )4(−  
representation, find an integer m such that 

nm ≥+++ 220 444  and express 

n + 3 )444( 1231 −+++ m  

in base 4 as ∑
=

m

i

i
ib

2

0
4 .  Now set ii bc 22 =  

and .3 1212 −− −= ii bc   Then 

.)4(
2

0

im

i
icn −= ∑

=
  

To show the uniqueness of base )4(−  
representation of n, suppose n has two 
distinct representations with digits ic 's 
and id 's.  Let j be the smallest integer 
such that .jj dc ≠   Then  

∑
=

−−=−=
k

ji

i
ii dcnn )4)((0  

would have a nonzero remainder when 
divided by ,4 1+j  a contradiction. 
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