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Problem 1.  Let ABC be an acute-angled 
triangle with circumcentre O.  Let P on 
BC be the foot of the altitude from A.  
Suppose that +∠≥∠ ABCBCA  o30 .  
Prove that .90o<∠+∠ COPCAB  
 
Problem 2.  Prove that  
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for all positive real numbers a, b and c. 
 
Problem 3.  Twenty-one girls and 
twenty-one boys took part in a 
mathematical contest. 
 
• Each contestant solved at most six 

problems. 
 
• For each girl and each boy, at least 

one problem was solved by both of 
them. 

 
Prove that there was a problem that was 
solved by at least three girls and at least 
three boys. 
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Let d be a positive integer that is not a 
square.  The equation 122 =− dyx  with 
variables yx,  over integers is called 
Pell’s equation.  It was Euler who 
attributed the equation to John Pell 
(1611-1685), although Brahmagupta (7th 
century), Bhaskara (12th century) and 
Fermat had studied the equation in 
details earlier. 

 
A solution ) ,( yx  of Pell’s equation is 
called positive if both x and y are positive 
integers.  Hence, positive solutions 
correspond to the lattice points in the first 
quadrant that lie on the hyperbola 

.122 =− dyx   A positive solution 
) ,( 11 yx  is called the least positive 

solution (or fundamental solution) if it 
satisfies xx <1  and 1y < y for every 
other positive solution (x, y).  (As the 
hyperbola 122 =− dyx  is strictly 
increasing in the first quadrant, the 
conditions for being least are the same as 
requiring +<+ xdyx 11  .)dy  

 

Theorem.  Pell’s equation 122 =− dyx  
has infinitely many positive solutions.  If 

),( 11 yx  is the least positive solution, 
then for ..., ,3 ,2 ,1=n  define  

.)( 11
n

nn dyxdyx +=+  

The pairs ),( nn yx  are all the positive 
solutions of the Pell’s equation.  The 

nx ’s and ny ’s are strictly increasing to 
infinity and satisfy the recurrence 
relations nnn xxxx   2 112 −= ++  and 2+ny  

.2 11 nn yyx −= +  
 
We will comment on the proof.  The 
least positive solution is obtained by 
writing d  as a simple continued 
fraction.  It turns out 
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where ][0 da =  and ... , , 21 aa  is a 
periodic positive integer sequence.  The 
continued fraction will be denoted by 

... , , , 210 aaa .  The k-th convergent of 

... , , , 210 aaa  is the number 
k

k

q
p  = 

kaaaa  ..., , , , 210 with kk qp  ,  relatively 

prime.  Let maaa  ..., , , 21  be the period 

for d .  The least positive solution of 
Pell’s equation turns out to be  
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For example, ... ,2 ,1 ,2 ,1 ,1 3 =  and so 

m = 2, then 
1
21 ,1 = .  We check 

22 132 ⋅− = 1 and clearly, )1 ,2(  is the 

least positive solution of 13 22 =− yx .  

Next, ... ,2 ,2 ,12 =  and so ,1=m  

then .
2
32 ,1 =   We check =⋅− 22 223  

1 and again clearly )2 ,3(  is the least 

positive solution of 12 22 =− yx . 
 

Next, if there is a positive solution (x, y) 

such that 1+<+<+ nnn xdyxdyx  

dyn 1++ , then consider =+ dvu  

)/()( dyxdyx nn ++ .  We will get u 

+ dyxdv 11 +<  and =− dvu  

)/()( dyxdyx nn −−  so that −2u  
2dv  = ))(( dvudvu +−  = 1, 

con-tradicting ) ,( 11 yx  being the least 

positive solution. 
 
To obtain the recurrence relations, note 
that
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dyxdyxdyx 11
2
1

2
1

2
11 2)( ++=+  

 dyxx 11
2
1 212 +−=  

 1)(2 111 −+= dyxx . 
So 

 dyx nn 22 ++ +  

 ndyxdyx )()( 11
2

11 ++=  

 nn dyxdyxx )()(2 11
1

111 +−+= +  

.)2(2 1111 dyyxxxx nnnn −+−= ++  
The related equation 122 −=− dyx  
may not have a solution, for example, 

−2x  13 2 −=y  cannot hold as 
≡− 22 3yx  122 −≠+ yx  (mod 4).  

However, if d is a prime and 1≡d  
(mod 4), then a theorem of Lagrange 
asserts that it will have a solution.  In 
general, if 22 dyx −  1−=  has a least 
positive solution ),( 11 yx , then all its 
positive solutions are pairs (x, y), 
where x + y d  = 12

11 )( −+ ndyx  
for some positive integer n.  
In passing, we remark that some k-th 
convergent numbers are special.  If the 
length m of the period for d  is even, 
then 122 =− dyx  has =),( nn yx  

) ,( 11 −− nmnm qp  as all its positive 
solutions, but 122 −=− dyx  has no 
integer solution.  If m is odd, then 

122 =− dyx  has ) ,( 11 −− jmjm yp  with 
j even as all its positive solutions and 

122 −=− dyx  has ) ,( 11 −− jmjm qp  
with j odd as all its positive solutions. 
Example 1.  Prove that there are 
infinitely many triples of consecutive 
integers each of which is a sum of two 
squares. 
Solution. The first such triple is 228 =  

,1310  ,039  ,2 22222 +=+=+  which 
suggests we consider triples 

,  ,1 22 xx −  .1 2 +x   Since 
1  2  22 =− yx  has infinitely many 

positive solutions (x, y), we see that 
12 −x = 2y + 2y , 2x = 2x + 20  and 
12 +x  satisfy the requirement and 

there are infinitely many such triples. 
Example 2.  Find all triangles whose 
sides are consecutive integers and 
areas are also integers. 
Solution.  Let the sides be z – 1, z, z + 1.  

Then the semiperimeter 
2
3zs =  and 

the area is 
4

)4(3 2 −
=

zz
A .  If A is an 

integer, then z cannot be odd, say z = 2x, 

and 42 −z = 3 2ω .  So =− 44 2x 3 2ω , 
which implies ω  is even, say .2 y=ω   

Then ,13 22 =− yx  which has =) ,( 11 yx  

(2, 1) as the least positive solution.  So all 

positive solutions are ),( nn yx , where nx  

.)32(3 n
ny +=+   Now =− 3nn yx  

n)32( − .  Hence,  

2
)32()32( nn

nx −++
=  

and 

32
)32()32( nn

ny −−+
= . 

The sides of the triangles are  ,12 −nx  
12 ,2 +nn xx  and the areas are A = 

.3 nn yx  
Example 3.  Find all positive integers k, m 
such that k < m and  

.)2()1(21 mkkk +++++=+++ LL  

Solution.  Adding k+++ L21  to both 
sides, we get ),1()1(2 +=+ mmkk  which 
can be rewritten as 22 )12(2)12( +−+ km  
= .1−  Now the equation 2x 12 2 −=− y  
has )1 ,1(  as its least positive solution.  So 
its positive solutions are pairs 

12)21(2 −+=+ n
nn yx .  Then 

2
)21()21( 1212 −− −++

=
nn

nx  

and  

22
)21()21( 1212 −− −−+

=
nn

ny . 

Since 12 22 −=− yx  implies x is odd, so x 

is of the form .12 +m   Then += 22 2my  

1+m  implies y is odd, so y is of the form 

.12 +k   Then ⎟
⎠

⎞
⎜
⎝

⎛ −−
=

2
1

  ,
2

1
) ,( nn xy

mk   

with n = 2, 3, 4, … are all the solutions. 
Example 4.  Prove that there are infinitely 
many positive integers n such that 12 +n  
divides n!. 
Solution.  The equation 15 22 −=− yx  
has )1 ,2(  as the least positive solution.  
So it has infinitely many positive 
solutions.  Consider those solutions with 

.5>y   Then xyy ≤<< 25  as ≤24 y  

.15 22 xy =−   So yyx 25)1(2 2 ⋅⋅=+  
divides x!, which is more than we want. 
Example 5.   For the sequence na  = 

⎥⎦
⎤

⎢⎣
⎡ ++ 22 )1(nn , prove that there are 

infinitely many n’s such that 

>− +1nn aa  1 and .11 =−+ nn aa  

Solution.   First consider the case +2n  

,)1( 22 yn =+  which can be rewritten 

as .12)12( 22 −=−+ yn   As in 

example 3 above, 12 22 −=− yx  has 

infinitely many positive solutions and 

each x is odd, say 12 += nx  for some 

n.  For these n’s, yan =  and 1−na  = 

⎥⎦
⎤

⎢⎣
⎡ +− 22)1( nn  = ⎥⎦

⎤
⎢⎣
⎡ − ny 42 .  The 

equation 222 )1( ++= nny  implies n 

> 2 and ≤−1na nayny =−<− 142  

-1.  So −na 11 >−na  for these n’s. 

Also, for these n’s, 1+na  =  

. 44)2()1( 222
⎥⎦
⎤

⎢⎣
⎡ ++=⎥⎦

⎤
⎢⎣
⎡ +++ nynn

As n < y < 2n + 1, we easily get y + 1 <  

.2442 +<++ yny  So =−+ nn aa 1  

(y + 1) – y = 1. 
Example 6.  (American Math Monthly 
E2606, proposed by R.S. Luthar)  Show 
that there are infinitely many integers n 
such that 2n + 1 and 3n + 1 are perfect 
squares, and that such n must be multiples 
of 40. 
Solution.  Consider 2n + 1 = 2u  and 
3n 21 v=+ . On one hand, 222 ≡+ vu  
(mod 5) implies 2u , ≡2v  1 (mod 5), 
which means n is a multiple of 5. 
On the other hand, we have 22 23 vu −  
= 1.  Setting u = x + 2y and v = x + 3y, 
the equation becomes .16 22 =− yx   
It has infinitely many positive 
solutions.  Since ,123 22 =− vu  u is 
odd, say u = 2k + 1.  Then n = 22k + 2k 
is even.  Since 3n + 1 = 2v , so v is odd, 
say v = 4m ± 1.  Then 3n = ±216m 8m, 
which implies n is also a multiple of 8. 

(continued on page 4) 



Mathematical Excalibur, Vol. 6, No. 3, Jun 01- Oct 01 Page 3
 

Problem Corner 
 
We welcome readers to submit their 
solutions to the problems posed below 
for publication consideration.  
Solutions should be preceded by the 
solver’s name, home (or email) 
address and school affiliation.  Please 
send submissions to Dr. Kin Y. Li, 
Department of Mathematics, Hong 
Kong University of Science & 
Technology, Clear Water Bay, Kowloon.  
The deadline for submitting solutions 
is November 10, 2001. 
 
Problem 131.  Find the greatest 
common divisor (or highest common 
factor) of the numbers nnn −  for n = 3, 
5, 7, … . 
 
Problem 132.  Points D, E, F are 
chosen on sides AB, BC, CA of ABC∆ , 
respectively, so that DE = BE and FE = 
CE.  Prove that the center of the 
circumcircle of ADF∆  lies on the 
angle bisector of DEF∠ . (Source: 
1989 USSR Math Olympiad) 
 
Problem 133.  (a) Are there real 
numbers a and b such that ba +  is 
rational and nn ba +  is irrational for 
every integer ?2≥n   (b) Are there 
real numbers a and b such that ba +  is 
irrational and nn ba +  is rational for 
every integer ?2≥n  (Source: 1989 
USSR Math Olympiad) 
 
Problem 134.  Ivan and Peter 
alternatively write down 0 or 1 from 
left to right until each of them has 
written 2001 digits.  Peter is a winner if 
the number, interpreted as in base 2, is 
not the sum of two perfect squares.  
Prove that Peter has a winning strategy. 
(Source: 2001 Bulgarian Winter Math 
Competition) 
 
Problem 135.  Show that for ,2≥n  if 

,0 ..., , , 21 >naaa  then  

≥+++ )1()1)(1( 33
2

3
1 naaa L  

).1()1)(1( 1
2

3
2
22

2
1 +++ aaaaaa nL  

(Source: 7th Czech-Slovak-Polish Match) 
 

***************** 
Solutions 

***************** 
 

Problem 126.  Prove that every integer 
can be expressed in the form −+ 22 yx  

,5 2z  where x, y, z are integers. 
Solution.  CHAN Kin Hang (CUHK, 
Math Major, Year 1), CHENG Kei Tsi 
Daniel (La Salle College, Form 7), 
CHENG Man Chuen (CUHK, Math 
Major, Year 1), CHUNG Tat Chi (Queen 
Elizabeth School, Form 5), FOK Chi 
Kwong (Yuen Long Merchants 
Association Secondary School, Form 5), 
IP Ivan (St. Joseph’s College, Form 6), 
KOO Koopa (Boston College, 
Sophomore), LAM Shek Ming Sherman 
(La Salle College, Form 6), LAU Wai 
Shun (Tsuen Wan Public Ho Chuen Yiu 
Memorial College, Form 6), LEE Kevin 
(La Salle College, Form 6), LEUNG Wai 
Ying (Queen Elizabeth School, Form 7), 
MAN Chi Wai (HKSYC IA Wong Tai 
Shan Memorial College), NG Ka Chun 
(Queen Elizabeth School, Form 7), SIU 
Tsz Hang (STFA Leung Kau Kui College, 
Form 6), YEUNG Kai Sing (La Salle 
College, Form 5) and YUNG Po Lam 
(CUHK, Math Major, Year 2). 
For n odd, say n = 2k + 1, we have 

222 5)1()2( kkk −++ = 2k + 1 = n.  For n 
even, say n = 2k, we have 2)12( −k + 

22 )1(5)2( −−− kk  = 2k = n. 
 
Problem 127.  For positive real numbers 
a, b, c with a + b + c = abc, show that 

2
3

1

1

1

1

1

1
222
≤

+
+

+
+

+ cba
, 

and determine when equality occurs. 
(Source: 1998 South Korean Math 
Olympiad) 
 
Solution.  CHAN Kin Hang (CUHK, 
Math Major, Year 1), CHENG Kei Tsi 
Daniel (La Salle College, Form 7), KOO 
Koopa (Boston College, Sophomore), 
LEE Kevin (La Salle College, Form 6) 
and NG Ka Chun (Queen Elizabeth 
School, Form 7). 

Let A = 1tan− a, B = 1tan− b, C = 1tan− c.  

Since a, b, c > 0, we have 0 < A, B, C < 
2
π .  

Now a + b + c = abc is the same as tan A + 

tan B + tan C = tan A tan B tan C.  Then 

tan C = 
BA
BA

tantan1
)tan(tan

−
+− = tan(π – A – B) 

which implies A + B + C = π .  In terms of 

A, B, C the inequality to be proved is cos A 

+ cos B + cos C 
2
3

≤ , which follows by 

applying Jensen’s inequality to f(x) = cos x 

on ).
2

 ,0( π  

Other commended solvers: CHENG 
Man Chuen (CUHK, Math Major, 
Year 1), IP Ivan (St. Joseph’s College, 
Form 6), LAM Shek Ming Sherman 
(La Salle College, Form 6), LEUNG 
Wai Ying (Queen Elizabeth School, 
Form 7), MAN Chi Wai (HKSYC&IA 
Wong Tai Shan Memorial College), 
TSUI Ka Ho (Hoi Ping Chamber of 
Commerce Secondary School, Form 7), 
WONG Wing Hong (La Salle College, 
Form 4) and YEUNG Kai Sing (La 
Salle College, Form 5). 
 
Problem 128.  Let M be a point on 
segment AB.  Let AMCD, BEHM be 
squares on the same side of AB.  Let the 
circumcircles of these squares intersect 
at M and N.  Show that B, N, C are 
collinear and H is the orthocenter of 

.ABC∆   (Source: 1979 Henan 
Province Math Competition) 
Solution.  LEUNG Wai Ying (Queen 
Elizabeth School, Form 7), MAN Chi 
Wai (HKSYC&IA Wong Tai Shan 
Memorial College) and YUNG Po 
Lam (CUHK, Math Major, Year 2). 
Since BNM∠  = BHM∠  = o45  = 

CDM∠  = CDM∠ , it follows B, N, C 
are collinear.  Next, ABCH   ⊥ .  Also, 

MEBH  ⊥  and ACME  imply BH ⊥  
AC.  So H is the orthocenter of .ABC∆  
Other commended solvers: CHAN 
Kin Hang (CUHK, Math Major, Year 
1), CHENG Kei Tsi Daniel (La Salle 
College, Form 7), CHENG Man 
Chuen (CUHK, Math Major, Year 1), 
CHUNG Tat Chi (Queen Elizabeth 
School, Form 5), IP Ivan (St. Joseph’s 
College, Form 6), KWOK Sze Ming 
(Queen Elizabeth School, Form 6), 
LAM Shek Ming Sherman (La Salle 
College, Form 6), Lee Kevin (La Salle 
College, Form 6), NG Ka Chun 
(Queen Elizabeth School, Form 7), 
SIU Tsz Hang (STFA Leung Kau Kui 
College, Form 6), WONG Wing Hong 
(La Salle College, Form 4) and 
YEUNG Kai Sing (La Salle College, 
Form 5). 
 
Problem 129.  If f(x) is a polynomial 
of degree 2m + 1 with integral 
coefficients for which there are 2m + 1 
integers 1221  , , , +mkkk K  such that 

1)( =ikf  for i = 1, 2, …, 2m + 1,  
prove that f(x) is not the product of two 
nonconstant polynomials with integral 
coefficients. 
Solution.  CHAN Kin Hang (CUHK, 
Math Major, Year 1), CHENG Kei Tsi 
Daniel (La Salle College, Form 7), 
CHENG Man Chuen (CUHK, Math 
Major, Year 1), IP Ivan (St. Joseph’s 
College, Form 6), KOO Koopa 
(Boston College, Sophomore), LAM 
Shek Ming Sherman (La Salle 
College, Form 6), LEE Kevin (La 
Salle College, Form 6), LEUNG Wai 
Ying (Queen Elizabeth School, Form 
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7), MAN Chi Wai (HKSYC&IA 
Wong Tai Shan Memorial College), 
YEUNG Kai Sing (La Salle College, 
Form 5) and YUNG Po Lam (CUHK, 
Math Major, Year 2). 
Suppose f is the product of two 
non-constant polynomials with integral 
co-efficients, say f = PQ.  Since 

== )(1 ikf  )( )( ii kQkP  and 
)(  ),( ii kQkP  are integers, so either 

both are 1 or both are –1.  As there are 
2m + 1 ik ’s, either )()( ii kQkP = = 1 
for at least m + 1 ik ’s or 

1)()( −== ii kQkP  for at least m + 
1 ik ’s.  Since deg f = 2m + 1, one of deg 
P or deg Q is at most m.  This forces P 
or Q to be a constant polynomial, a 
contradiction. 
Other commended solvers: NG Cheuk 
Chi (Tsuen Wan Public Ho Chuen Yiu 
Memorial College) and NG Ka Chun 
(Queen Elizabeth School, Form 7). 
 
Problem 130.  Prove that for each 
positive integer n, there exists a circle in 
the xy-plane which contains exactly n 
lattice points in its interior, where a 
lattice point is a point with integral 
coordinates. (Source: H. Steinhaus, 
Zadanie 498, Matematyka 10 (1957), p. 58) 
Solution.  CHENG Man Chuen 
(CUHK, Math Major, Year 1) and IP 
Ivan (St. Joseph’s College, Form 6). 

Let P = ⎟
⎠
⎞

⎜
⎝
⎛

3
1 ,2 .  Suppose lattice 

points ) ,( ), ,( 1100 yxyx  are the same 

distance from P.  Then 

( )
2

0
2

0 3
1 2 ⎟
⎠
⎞

⎜
⎝
⎛ −+− yx = 

( ) .
3
1 2

2

1
2

1 ⎟
⎠
⎞

⎜
⎝
⎛ −+− yx   Moving the x 

terms to the left, the y terms to the right 

and factoring, we get  

    ( )22)( 1010 −+− xxxx  

 = . 
3
2)( 1010 ⎟
⎠
⎞

⎜
⎝
⎛ −+− yyyy  

As the right side is rational and 2  is 
irrational, we must have .10 xx =   
Then the left side is 0, which forces 

01 yy =  since 01 yy +  is integer.  So 
the lattice points are the same. 
Now consider the circle with center at 

P and radius r.  As r increases from 0 to 
infinity, the number of lattice points inside 
the circle increase from 0 to infinity.  As 
the last paragraph shows, the increase 
cannot jump by 2 or more.  So the 
statement is true. 
Other commended solvers: CHENG Kei 
Tsi Daniel (La Salle College, Form 7), 
KOO Koopa (Boston College, 
Sophomore), LEUNG Wai Ying (Queen 
Elizabeth School, Form 7), MAN Chi 
Wai (HKSYC&IA Wong Tai Shan 
Memorial College), NG Ka Chun (Queen 
Elizabeth School, Form 7) and YEUNG 
Kai Sing (La Salle College, Form 4). 
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Problem 4.  Let n be an odd integer 
greater than 1, let nkkk  ..., , , 21  be given 
integers.  For each of the n! permutations 

) ..., , ,( 21 naaaa =  of 1, 2, …, n, let 

.)(
1
∑
=

=
n

i
iiakaS  

Prove that there are two permutations b 
and c, b ≠  c, such that n! is a divisor of 
S(b) – S(c). 
 

Problem 5.  In a triangle ABC, let AP 
bisect BAC∠ , with P on BC, and let BQ 
bisect ABC∠ , with Q on CA.  It is known 
that o60=∠BAC  and that AB + BP = AQ 
+ QB. 
What are the possible angles of triangle 
ABC? 
 
Problem 6.  Let a, b, c, d be integers with 
a > b > c > d > 0.  Suppose that 
ac + bd = (b + d + a – c)(b + d – a + c). 
Prove that ab + cd is not prime. 
 

 
 
Pell’s Equation (I)  

(continued from page 2) 
 

Example 7.  Prove that the only positive 
integral solution of 235 =− ba  is a = b = 1. 
Solution.  Clearly, if a or b is 1, then the 
other one is 1, too.  Suppose (a, b) is a 
solution with both a, b > 1.  Considering 
(mod 4), we have 1 – 2)1( ≡− b  (mod 4), 
which implies b is odd.  Considering (mod 
3), we have 2)1( ≡− a  (mod 3), which 

implies a is odd. 
Setting 13 += bx  and 2/)1(3 −= by  

2/)1(5 −a , we get +== bbaby 3(35315 2  
2) = ( .11)13 22 −=−+ xb   So (x, y) is a 
positive solution of .115 22 =− yx   The 
least positive solution is )1 ,4( .  Then (x, y) 
= ) ,( nn yx  for some positive integer n, 
where .)154(  15  n

nn yx +=+   After 
examining the first few ny ’s, we observe 
that ky3  are the only terms that are 
divisible by 3.  However, they also seem 
to be divisible by 7, hence cannot be of 
the form dc53 . 
To confirm this, we use the recurrence 
relations on ny .  Since =1y 1, =2y 8 
and nnn yyy −= ++ 12 8 , taking ny (mod 
3), we get the sequence 1, 2, 0, 1, 2, 0… 
and taking ny (mod 7), we get 1, 1, 0, -1, 
-1, 0, 1, 1, 0, -1, -1, 0, …. 
Therefore, no nyy = is of the form dc53  
and 1  , >ba  cannot be solution to 

ba 35 −  = 2. 
 
Example 8.  Show that the equation 2a  

43 cb =+  has infinitely many solutions. 

Solution.  We will use the identity  

+31 ,
2

)1(2
2

33 ⎟
⎠
⎞

⎜
⎝
⎛ +

=++
nnnL  

which is a standard exercise of 

mathematical induction.  From the 

identity, we get =+⎟
⎠
⎞

⎜
⎝
⎛ −    

2
)1( 3

2

nnn  

2

2
)1(
⎟
⎠
⎞

⎜
⎝
⎛ +nn  for n > 1.  All we need to do 

now is to show there are infinitely many 

positive integers n such that n(n + 1)/2 = 
2k  for some positive integers k.  Then (a, 

b, c) = ((n – 1)n/2, n, k) solves the 

problem. 

Now n(n + 1)/2 = 2k  can be rewritten as 
.1)2(2)12( 22 =−+ kn   We know −2x  

12 2 =y  has infinitely many positive 
solutions.  For any such ), ,( yx  clearly x 
is odd, say .12 += mx   They 22 2my =  

m2+  implies y is even.  So any such (x, y) 
is of the form ,12( +n  2k).  Therefore, 
there are infinitely many such n. 


