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Problem 1.  Let S be a set with 2002 
elements, and let N be an integer with 0 

20022≤≤ N .  Prove that it is possible to 
color every subset of S either black or 
white so that the following conditions hold: 

(a) the union of any two white subsets 
is white; 

(b) the union of any two black subsets is 
black; 

(c) there are exactly N white subsets. 
 

Problem 2.  Let ABC be a triangle such 
that 

,
7
6

2
cot3

2
cot2

2
cot   

2222






=






+






+








r
sCBA

 
where s and r denote its semiperimeter 
and its inradius, respectively.  Prove that 
triangle ABC is similar to a triangle T 
whose side lengths are all positive 
integers with no common divisor and 
determine these integers. 
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 George Polya’s famous book How 
to Solve It is a book we highly 
recommend every student who is 
interested in problem solving to read.  In 
solving a difficult problem, Polya 
teaches us to ask the following questions.  
What is the condition to be satisfied?  
Have you seen a similar problem?  Can 
you restate the problem in another way or 
in a related way?  Where is the difficulty?  
If you cannot solve it, can you solve a 
part of the problem if the condition is 
relaxed.  Can you solve special cases?  Is 
there any pattern you can see from the 
special cases?  Can you guess the 
answer?  What clues can you get from 
the answer or the special cases?  Below 
we will provide some examples to guide 
the student in analyzing problems. 
 
Example 1.  (Polya, How to Solve It, pp. 
23-25)  Given ABC∆  with AB the 
longest side.  Construct a square having 
two vertices on side AB and one vertex 
on each of sides BC and CA using a 
compass and a straightedge (i.e. a ruler 
without markings). 

Analysis.  (Where is the difficulty?)  The 
difficulty lies in requiring all four 
vertices on the sides of the triangle.  If we 
relax four to three, the problem becomes 
much easier.  On CA, take a point P close 
to A.  Draw the perpendicular from P to 
AB and let the foot be Q.  With Q as 
center and PQ as radius, draw a circle 
and let it intersect AB at R.  Draw the 
perpendicular line to AB through R and 
let S be the point on the line which is PQ 
units from R and on the same side of AB 
as P.  Then PQRS is a square with P on 
CA and Q, R on AB. 

 (What happens if you move the 
point P on side CA?)  You get a square 

similar to PQRS.  (What happens in the 
special case P = A?)  You get a point.  
(What happens to S if you move P from A 
toward C?)  As P moves along AC, the 
triangles APQ will be similar to each 
other.  Then the triangles APS will also 
be similar to each other and S will trace a 
line segment from A.  This line AS 
intersects BC at a point S', which is the 
fourth vertex we need.  From S', we can 
find the three other vertices dropping 
perpendicular lines and rotating points. 
 
Example 2.  (1995 Russian Math 
Olympiad)  There are n > 1 seats at a 
merry-go-around.  A boy takes n rides.  
Between each ride, he moves clockwise a 
certain number (less than n) of places to a 
new horse.  Each time he moves a 
different number of places.  Find all n for 
which the boy ends up riding each horse. 

Analysis.  (Can you solve special 
cases?)  The cases n = 2, 4, 6 work, but 
the cases n = 3, 5 do not work.  (Can you 
guess the answer?)  The answer should 
be n is even.  (What clues can you get 
from the special cases?)  From 
experimenting with cases, we see that if 
n > 1 is odd, then the last ride seems to 
always repeat the first horse.  (Why?)  
From the first to the last ride, the boy 
moved 1 + 2 + +L (n – 1) = n(n – 1)/2 
places.  If n > 1 is odd, this is a multiple 
of n and so we repeat the first horse. 

 (Is there any pattern you can see 
from the special cases when n is even?)  
Name the horses 1, 2, …, n in the 
clockwise direction.  For n = 2, we can 
ride horses 1, 2 in that order and the 
move sequence is 1.  For n = 4, we can 
ride horses 1, 2, 4, 3 in that order and the 
move sequence is 1, 2, 3.  For n = 6, we 
can ride horses 1, 2, 6, 3, 5, 4 and the 
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move sequence is 1, 4, 3, 2, 5.  Then for 
the general even cases n, we can ride 
horses 1, 2, n, 3, n – 1, …, (n/2) + 1 in that 
order with move sequence 1, n – 2, 3, n – 
4, …, 2, n – 1.  The numbers in the move 
sequence are all distinct as it is the result 
of merging odd numbers 1, 3, …, n – 1 
with even numbers n – 2, n – 4, …, 2. 
 
Example 3.  (1982 Putnam Exam)  Let K 
(x, y, z) be the area of a triangle with sides 
x, y, z.  For any two triangles with sides a, 
b, c and a', b', c' respectively, show that 
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and determine the case of equality. 

Analysis.  (Can you restate the problem 
in another way?)  As the problem is about 
the area and sides of a triangle, we bring 
out Heron’s formula, which asserts the 
area of a triangle with sides x, y, z is given 
by  

K(x, y, z) = ))()(( zsysxss −−− , 

where s is half the perimeter, i.e. s = 2
1 (x  

+ y + z).  Using this formula, the problem 
becomes showing 
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where s = 2
1 (a + b + c), t = s – a, u = s –  

b, v = s – c and similarly for '.,',',' vuts  

(Have you seen a similar problem or 
can you relax the condition?)  For those 
who saw the forward-backward induction 
proof of the AM-GM inequality before, 
this is similar to the proof of the case n = 4 
from the case n = 2.  For the others, 
having groups of four variables are 
difficult to work with.  We may consider 
the more manageable case n = 2.  If we 
replace 4 by 2, we get a simpler inequality 

.)')('('' yyxxyxxy ++≤+  

This is easier.  Squaring both sides, 
canceling common terms, then factoring,  

this turns out to be just ( ) ≥−
2

'' yxxy  

0.  Equality holds if and only if =': xx  
'.: yy   Applying this simpler inequality 

twice, we easily get the required inequality 
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Tracing the equality case back to the 
simpler inequality, we see equality holds if 
and only if ,':':':: cbacba =  i.e. the 
triangles are similar. 
 
Example 4.  Is there a way to pack 250 

411 ××  bricks into a 101010 ××  box? 
 
Analysis.  (Where is the difficulty?)  10 is 
large for a 3 dimensional cube.  We can 
relax the problem a bit by considering a 
two dimensional analogous problem with 
smaller numbers, say 21×  cards pack into 
a 88×  board.  This is clearly possible.  
(What if we relax the board to be a square, 
say by taking out two squares from the 
board?)  This may become impossible.  
For example, if the 88×  board is a 
checkerboard and we take out two black 
squares, then since every 21×  card covers 
exactly one white and one black square, 
any possible covering must require the 
board to have equal number of white and 
black squares. 

(What clue can you get from the 
special cases?)  Coloring a board can help 
to solve the problem.  (Can we restate the 
problem in a related way?)  Is it possible 
to color the cubes of the 101010 ××  box 
with four colors in such a way that in 
every four consecutive cubes each color 
occurs exactly once, where consecutive 
cubes are cubes sharing a common face?  
Yes, we can put color 1 in a corner cube, 
then extend the coloring to the whole box 
by putting colors 1, 2, 3, 4 periodically in 
each of the three perpendicular directions 
parallel to the edges of the box.  However, 
a counting shows that for the 101010 ××  
box, there are 251 color 1 cubes, 251 color 
2 cubes, 249 color 3 cubes and 249 color 4 
cubes.  So the required packing is 
impossible. 
 
Example 5.  (1985 Moscow Math 
Olympiad)  For every integer ,3≥n  show 
that 2272 yxn +=  for some odd positive 

integers x and y. 
Analysis.  (cf. Arthur Engel, Problem- 
Solving Strategies, pp. 126-127) (Can you 
solve special cases?)  For n = 3, 4, …, 10, 
we have the table: 

n 3 4 5 6 7 8 9 10

nxx =  1 1 1 3 1 5 7 3 

nyy =  1 3 5 1 11 9 13 31
 

(Is there any pattern you can see 
from the special cases?)  In cases n = 3, 5, 
8, it seems that 1+nx  is the average of nx  
and .ny   For cases n = 4, 6, 7, 9, 10, the 
average of nx  and ny is even and it 
seems that .2 1+=− nnn xyx   (Can you 
guess the answer?)  The answer should be 
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(Is this correct?)  The case n = 3 is correct.  

If 2272 nn
n yx += , then the choice of 

1+ny  will give 2
1

2
1

1 72 ++
+ += nn

n yx .  

(Must 1+nx  and 1+ny  be odd positive 

integers?)  Yes, this can be checked by 

writing nx  and ny  in the form 4k .1±  
 

 
IMO 2002 

 IMO 2002 will be held in Glasgow, 
United Kingdom from July 19 to July 
30 this summer.  Based on the selection 
test performances, the following 
students have been chosen to represent 
Hong Kong: 
 
CHAO Khek Lun (St. Paul’s College) 
CHAU Suk Ling (Queen Elizabeth School) 
CHENG Kei Tsi (La Salle College) 
IP Chi Ho (St. Joseph College) 
LEUNG Wai Ying (Queen Elizabeth School) 
YU Hok Pun (SKH Bishop Baker Secondary Sch) 
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Problem Corner 
 
We welcome readers to submit their 
solutions to the problems posed below 
for publication consideration.  
Solutions should be preceded by the 
solver’s name, home (or email) 
address and school affiliation.  Please 
send submissions to Dr. Kin Y. Li, 
Department of Mathematics, The Hong 
Kong University of Science & 
Technology, Clear Water Bay, Kowloon.  
The deadline for submitting solutions 
is September 20, 2002. 
 
Problem 151.  Every integer greater 
than 2 can be written as a sum of 
distinct positive integers.  Let A(n) be 
the maximum number of terms in such 
a sum for n.  Find A(n).  (Source: 1993 
German Math Olympiad) 
 
Problem 152.   Let ABCD be a 
cyclic quadrilateral with E as the 
intersection of lines AD and BC.  Let M 
be the intersection of line BD with the 
line through E parallel to AC.  From M, 
draw a tangent line to the circumcircle 
of ABCD touching the circle at T.  
Prove that MT = ME.  (Source: 1957 
Nanjing Math Competition) 
 
Problem 153.   Let R denote the real 
numbers.  Find all functions f: R  R 
such that the equality f(f(x) + y) = f( 2x  
- y) + 4f(x)y holds for all pairs of real 
numbers x, y.  (source: 1997 Czech- 
Slovak Match) 
 
Problem 154.  For nonnegative 
numbers a, d and positive numbers b, 
c satisfying b + c a≥ + d, what is the 

minimum value of 
ba

c
dc

b
+

+
+

?   

(Source: 1988 All Soviet Math 

Olympiad) 
 

Problem 155.  We are given 1997 
distinct positive integers, any 10 of 
which have the same least common 
multiple.  Find the maximum possible 
number of pairwise relatively prime 
numbers among them.  (Source: 1997 
Hungarian Math Olympiad) 
 

***************** 
Solutions 

***************** 
 
Problem 146.  Is it possible to partition a 
square into a number of congruent right 
triangles each containing a o30 angle? (Source: 
1994 Russian Math Olympiad, 3rd Round) 
 
Solution.  CHAO Khek Lun Harold (St. 
Paul’s College, Form 7), CHEUNG Chung 
Yeung (STFA Leung Kau Kui College, 
Form 4), Antonio LEI (Colchester Royal 
Grammar School, UK, Year 12), LEUNG 
Wai Ying (Queen Elizabeth School, Form 
7), POON Ming Fung (STFA Leung Kau 
Kui College, Form 4), SIU Tsz Hang 
(STFA Leung Kau Kui College, Form 6), 
WONG Wing Hong (La Salle College, 
Form 4) and Richard YEUNG Wing Fung 
(STFA Leung Kau Kui College, Form 4). 
 
Without loss of generality, let the sides of 
the triangles be 2, 1, 3 .  Assume n such 
triangles can partition a square.  Since the 
sides of the square are formed by sides of 
these triangles, so the sides of the square 
are of the form a + ,3b  where a, b are 
nonnegative integers.  Considering the 
area of the square, we get =+ 2)3( ba   

,
2

3n  which is the same as )3(2 22 ba +   

= (n – 4ab) .3   Since a, b are integers and 
3  is irrational, we must have 22 3ba + = 

0 and n – 4ab = 0.  The first equation 
implies a = b = 0, which forces the sides of 
the square to be 0, a contradiction. 
 
Other commended solver: WONG Chun 
Ho (STFA Leung Kau Kui College, Form 7). 
 
Problem 147.  Factor ++ 28 4xx 4 into 
two nonconstant polynomials with integer 
coefficients. 
 
Solution. CHENG Ka Wai (STFA Leung 
Kau Kui College, Form 4), CHEUNG 
CHUNG YEUNG (STFA Leung Kau Kui 
College, Form 4), FUNG Yi (La Salle 
College, Form 4), LEUNG Wai Ying 
(Queen Elizabeth School, Form 7), POON 
Ming Fung (STFA Leung Kau Kui College, 
Form 4), SIU Tsz Hang (STFA Leung Kau 
Kui College, Form 6) and TANG Sze Ming 
(STFA Leung Kau Kui College, Form 4). 
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Other commended solvers:  CHAO 
Khek Lun Harold (St. Paul’s College, 
Form 7), HUI Chun Yin John (Hong 
Kong Chinese Women’s Club College, 
Form 6), LAW Siu Lun Jack  (CCC 
Ming Kei College, Form 7), WONG 
Chun Ho (STFA Leung Kau Kui 
College, Form 7), Tak Wai Alan 
WONG (University of Toronto, Canada), 
WONG Wing Hong (La Salle College, 
Form 4) & YEUNG Kai Tsz Max (Ju 
Ching Chu Secondary School, Form 5). 
 
Problem 148.  Find all distinct prime 
numbers p, q, r, s such that their sum is 
also prime and both 2p + qs, +2p qr 
are perfect square numbers. (Source: 
1994 Russian Math Olympiad, 4th Round) 
 
Solution.  CHAO Khek Lun Harold 
(St. Paul’s College, Form 7), CHEUNG 
CHUNG YEUNG (STFA Leung Kau 
Kui College, Form 4), LAW Siu Lun 
Jack  (CCC Ming Kei College, Form 7), 
Antonio LEI (Colchester Royal 
Grammar School, UK, Year 12), 
LEUNG Wai Ying (Queen Elizabeth 
School, Form 7), POON Ming Fung 
(STFA Leung Kau Kui College, Form 4), 
SIU Tsz Hang (STFA Leung Kau Kui 
College, Form 6), TANG Chun Pong 
Ricky (La Salle College, Form 4), 
WONG Chun Ho (STFA Leung Kau 
Kui College, Form 7), WONG Wing 
Hong (La Salle College, Form 4), 
Richard YEUNG Wing Fung (STFA 
Leung Kau Kui College, Form 4) and 
YUEN Ka Wai (Carmel Divine Grace 
Foundation Secondary School, Form 6). 
 
Since the sum of the primes p, q, r, s is 
a prime greater than 2, one of p, q, r, s is 
2.  Suppose ≠p 2.  Then one of q, r, s 
is 2 so that one of 2p + qs, 2p + qr is 
of the form 2)12( +m + 2(2n + 1) = 
4( 2m + m + n) + 3, which cannot be a 
perfect square as perfect squares are of 
the form =2)2( k 24k or =+ 2)12( k  
4( +2k k) + 1.  So p = 2. 
Suppose +22 qs = 2a , then q, s odd 
implies a odd and qs = (a + 2)(a – 2).  
Since q, s are prime, the smaller factor a – 
2 = 1, q or s.  In the first case, a = 3 and qs 
= 5, which is impossible.  In the 
remaining two cases, either q = a – 2, s = 
a + 2 = q + 4 or s = a – 2, q = a + 2 = s + 4.  
Next 222 bqr =+ will similarly implies 
q, r differe by 4.  As q, r, s are distinct 
primes, one of r, s is q – 4 and the other is 
q = 4.  Note that q – 4, q, q + 4 have 
different remainders when they are 
divided by 3.  One of them is 3 and it must 
be q – 4.  Thus there are two solutions (p, 
q, r, s) = (2, 7, 3, 11) or (2, 7, 11, 3).  It is 
easy to check both solutions satisfy all 
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conditions. 
Other commended solvers: WONG Wai 
Yi (True Light Girl’s College, Form 4) 
 
Problem 149.  In a 2000 × 2000 
table, every square is filled with a + 1 
or a – 1.  It is known that the sum of 
these numbers is nonnegative.  Prove 
that there are 1000 columns and 1000 
rows such that the sum of the numbers 
in these intersection squares is at least 
1000.  (Source: 1994 Russian Math 
Olympiad, 5th Round) 
 
Solution 1.  LEUNG Wai Ying 
(Queen Elizabeth School, Form 7). 
 
Since the numbers have a nonnegative 
sum, there is a column with a 
nonnegative sum.  Hence there are at 
least one thousand squares in that 
column filled with +1.  Thus, without 
loss of generality we may assume the 
squares in rows 1 to 1000 of column 1 
are filled with +1.  Evaluate the sums 
of the numbers in the squares of rows 1 
to 1000 for each of the remaining 
columns.  Pick the 999 columns with 
the largest sums in these evaluations.  
If these 999 columns have a 
nonnegative total sum S, then we are 
done (simply take rows 1 to 1000 and 
the first column with these 999 
columns).  Otherwise, S < 0 and at least 
one of the 999 columns has a negative 
sum.  Since the sum of the first 100 
squares in each column must be even, 
the sum of the first 100 squares in that 
column is at most –2.  Then the total 
sum of all squares in rows 1 to 1000 is 
at most 1000 + S + (-2)1000 < –1000. 

Since the sum of the whole table is 
nonnegative, the sum of all squares in 
rows 1001 to 2000 would then be 
greater than 1000.  Then choose the 
squares in these rows and the 1000 
columns with the greatest sums.  If 
these squares have a sum at least 1000, 
then we are done.  Otherwise, assume 
the sum is less than 1000, then at least 
one of these 1000 columns will have a 
nonpositive sum.  Thus, the remaining 
1000 columns will each have a 
nonpositive sum.  This will lead to the 
sum of all squares in rows 1001 to 2000 
be less than 1000 + (0)1000 = 1000, a 

contradiction. 
Solution 2.  CHAO Khek Lun Harold 
(St. Paul’s College, Form 7). 
 
We first prove that for a nn×  square filled 
with +1 and −1 and the sum is at least m, 
where m, n are of the same parity and m < n, 
there exists a (n – 1) ×  (n – 1) square the 
numbers there have a sum at least m + 1.  If 
the sum of the numbers in the nn×  square is 
greater than m, we may convert some of the 
+1 squares to 1−  to make the sum equal m.  
Let the sum of the numbers in rows 1 to n be 

.,,1 nrr K   Since nrr ++L1 = m < n, there is 
a .0≤jr   For each square in row j, add up 
the numbers in the row and column on which 
the square lies.  Let them be .,,1 naa K   Now 

.)1(1 nmrnmaa jn <≤−+=++L   
Since ia  is the sum of the numbers in 2n – 1 
squares, each ai  is odd.  So there exists 
some .1−≤ka   Removing row j and 
column k, the sum of the numbers in the 
remaining (n – 1)× (n – 1) square is m – 

≥ka m + 1.  Finally convert back the –1 
squares to +1 above and the result follows.  

For the problem, start with n = 2000 and m 
= 0, then apply the result above 1000 
times to get the desired statement. 
 
Problem 150.  Prove that in a convex 
n-sided polygon, no more than n diagonals 
can pairwise intersect.  For what n, can there 
be n pairwise intersecting diagonals?  (Here 
intersection points may be vertices.)  (Source: 
1962 Hungarian Math Olympiad) 
 
Solution.  CHAO Khek Lun Harold (St. 
Paul’s College, Form 7) and TANG Sze Ming 
(STFA Leung Kau Kui College, Form 4. 

For n = 3, there is no diagonal and for n = 
4, there are exactly two intersecting 
diagonals.  So let 5≥n .  Note two 
diagonals intersect if and only if the pairs 
of vertices of the diagonals share a 
common vertex or separate each other on 
the boundary.  Thus, without loss of 
generality, we may assume the polygon is 
regular.  For each diagonal, consider its 
perpendicular bisector.  If n is odd, the 
perpendicular bisectors are exactly the n 
lines joining a vertex to the midpoint of its 
opposite side.  If n is even, the 
perpendicular bisectors are either lines 
joining opposite vertices or lines joining 

the midpoints of opposite edges and 
again there are exactly n such lines.  
Two diagonals intersect if and only if 
their perpendicular bisectors do not 
coincide.  So there can be no more than 
n pairwise intersecting diagonals.  For 

5≥n , since there are exactly n 
different perpendicular bisectors, so 
there are n pairwise intersecting 
diagonals. 
 
Other commended solvers: Antonio 
LEI (Colchester Royal Grammar 
School, UK, Year 12), LEUNG Wai 
Ying (Queen Elizabeth School, Form 7) 
and SIU Tsz Hang (STFA Leung Kau 
Kui College, Form 6). 
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Problem 3.  Prove that any monic 
polynomial (a polynomial with leading 
coefficient 1) of degree n with real 
coefficients is the average of two monic 
polynomials of degree n with n real roots. 
 
Problem 4.  Let R be the set of real 
numbers.  Determine all functions 

RRf →:  such that  
)()()( 22 yyfxxfyxf −=−  

for all real numbers x and y. 
 
Problem 5.  Let a, b be integers 
greater than 2.  Prove that there exists a 
positive integer k and a finite sequence 

,1n knn  ..., ,2 of positive integers such that 

1n  = a, kn = b, and 1+iinn  is divisible by 
+in 1+in  for each i(1 i≤ < k). 

 
Problem 6. I have an nn×  sheet 
of stamps, from which I’ve been asked 
to tear out blocks of three adjacent 
stamps in a single row or column.  (I 
can only tear along the perforations 
separating adjacent stamps, and each 
block must come out of a sheet in one 
piece.)  Let b(n) be the smallest number 
of blocks I can tear out and make it 
impossible to tear out any more blocks.  
Prove that there are real constants c and 
d such that 

dnnnbcnn +≤≤− 22
5
1)(

7
1  

for all n > 0. 


