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Functional Equations  

Kin Y. Li 

 
Olympiad Corner 
 
The Fifth Hong Kong (China) 
Mathematical Olympiad was held on 
December 21, 2002. The problems are as 
follow. 
 
 
Problem 1. Two circles intersect at points 
A and B. Through the point B a straight 
line is drawn, intersecting the first circle at 
K and the second circle at M. A line 
parallel to AM is tangent to the first circle 
at Q. The line AQ intersects the second 
circle again at R. 
 
(a) Prove that the tangent to the second 
circle at R is parallel to AK. 
(b) Prove that these two tangents are 
concurrent with KM. 
 
Problem 2.  Let n ≥ 3 be an integer. In a 
conference there are n mathematicians. 
Every pair of mathematicians  
communicate in one of the n official 
languages of the conference. For any 
three different official languages, there 
exist three mathematicians who 
communicate with each other in these 
three languages. Determine all n for 
which this is possible. Justify your 
claim. 
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   A functional equation is an equation 
whose variables are ranging over 
functions. Hence, we are seeking all 
possible functions satisfying the 
equation. We will let ℤ denote the set of 
all integers, ℤ+ or ℕ denote the positive 
integers, ℕ0 denote the nonnegative 
integers, ℚ denote the rational numbers, 
ℝ denote the real numbers, ℝ+ denote 
the positive real numbers and ℂ denote 
the complex numbers. 
 
In simple cases, a functional equation 
can be solved by introducing some 
substitutions to yield more information 
or additional equations.  
 
Example 1. Find all functions f : ℝ → ℝ 
such that  
  
         x2 f (x) + f (1 – x) = 2 x – x4 
 
for all x ∊ℝ. 
 
Solution.  Replacing x by 1 – x, we have 
 
 (1– x)2 f (1– x) + f ( x ) =2 (1–x) – (1–x)4. 
 
 Since f (1 – x) =2 x – x4– x2 f (x) by the 
given equation, substituting this into the 
last equation and solving for  f  (x), we 
get  f (x) =  1– x2. 
 
Check:  For f (x) =  1 – x2,  
 

   x2 f (x) + f (1–x) = x2 (1– x2 )+(1– (1– x)2 )  
                          = 2 x – x4. 
 
For certain types of functional equations, 
a standard approach to solving the 
problem is to determine some special 
values (such as  f ( 0 ) or  f ( 1 ) ), then  
inductively determine f ( n ) for   n ∊ ℕ0, 
follow by the values f  ( 1 / n ) and use 
density to find f ( x ) for all x ∊ ℝ. The 
following are examples of such 
approach. 
 
Example 2. Find all functions f : ℚ → ℚ 
such that the Cauchy equation 
  
           f ( x + y ) = f ( x ) +  f ( y )  
 
holds for all x, y ∊ℚ.  

Solution. Step 1 Taking x = 0 = y, we get 
f (0) = f (0) + f (0) + f (0) , which implies 
f (0) = 0. 
 
Step 2 We will prove f (kx) = k f (x) for  
k∊ ℕ, x∊ℚ by induction. This is true for 
k = 1. Assume this is true for k. Taking  y 
= kx, we get  
 
   f ((k+1) x) = f (x + kx) = f (x) + f (kx) 
                    = f (x) + k f (x) = (k+1) f (x). 
 
Step 3 Taking y = –x, we get  
 
    0 = f (0) = f (x+ (–x)) = f (x) + f (–x), 
 
which implies f (–x) = – f (x). So  
 
    f (–kx) = – f (kx) = – k f (x) for k∊ℕ. 
 
Therefore, f (kx) = k f (x) for k ∊ℤ, x∊ℚ. 
 
Step 4 Taking x = 1/ k, we get  
 
          f (1) = f (k (1/ k)) = k f (1/ k), 
 
which implies f (1/ k) = (1/ k ) f (1). 
 
Step 5 For m∊ℤ, n∊ℕ,  
 
  f (m/ n) = m f (1/ n) = (m/ n) f (1). 
 
Therefore, f (x) = cx with c = f (1). 
 
Check: For f (x) = cx with c∊ℚ ,  
 
  f (x+y) = c(x+y) = cx + cy = f (x) + f (y). 
 
In dealing with functions on ℝ, after 
finding the function on ℚ, we can often 
finish the problem by using the 
following fact.  
 
Density of Rational  Numbers For every 
real number x, there are rational 
numbers p1, p2, p3, … increase to x and 
there are rational numbers q1, q2, q3, … 
decrease to x. 
 
 This can be easily seen from the decimal 
representation of real numbers. For 
example, the number π = 3.1415… is the 
limits of 3, 31/10, 314/100, 3141/1000, 
31415/10000, … and also 4, 32/10, 
315/100, 3142/1000, 31416/10000, ….   
 
(In passing, we remark that there is a 
similar fact with rational numbers 
replaced by irrational numbers.) 
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Example 3. Find all functions 
f :ℝ→ℝ  such that  

  
          f ( x + y) = f ( x ) +  f ( y ) 

 
for all x, y ∊ ℝ and  f (x) ≥ 0 for x ≥ 0. 
 
Solution. Step 1 By example 2, we 
have  f (x) = x f (1) for x∊ℚ. 

 
Step 2  If x ≥  y, then x – y ≥  0. So 

 
f (x) = f ((x–y)+y) = f (x–y)+f (y )≥  f (y). 

 
Hence, f is increasing. 

 
Step 3 If x ∊ℝ, then by the density of 
rational numbers, there are rational pn, 
qn such that pn ≤  x ≤  qn, the pn’s 
increase to x and the qn’s decrease to x. 
So by step 2, pn   f (1) = f (pn) ≤  f (x) ≤      
f (qn) = qn f (1). Taking limits, the 
sandwich theorem gives f (x) = x f (1) 
for all x. Therefore, f (x) = cx with c ≥  0. 
The checking is as in example 2. 
 
Remarks. (1) In example 3, if we 
replace the condition that “f (x) ≥ 0 for 
x ≥ 0” by  “f is monotone”, then the 
answer is essentially the same, namely 
f (x) = cx with c = f (1).  Also if the 
condition that “f (x) ≥ 0 for x ≥ 0” is 
replaced by “f  is continuous at 0”, then 
steps 2 and 3 in example 3 are not 
necessary. We can take rational pn’s 
increase to x and take limit of pn f (1) = 
f (pn) = f (pn–x) + f (x) to get x f (1) = f (x) 
since pn–x increases to 0. 

 
(2) The Cauchy equation  f ( x + y ) =      
f ( x ) +  f ( y ) for all x, y ∊ ℝ has 
noncontinuous solutions (in particular, 
solutions not of the form f (x) = cx). 
This requires the concept of a Hamel 
basis of the vector space ℝ over ℚ 
from linear algebra. 
 
The following are some useful facts 
related to the Cauchy equation. 
 
Fact 1. Let A = ℝ, [0, ∞) or (0, ∞).  If  
f :A→ℝ  satisfies   f ( x + y ) = f ( x ) 
+  f (y) and  f  (xy) = f  (x) f (y) for all 
x, y ∊ A, then either f (x) = 0 for all x 
∊ A or  f (x) = x for all x ∊ A. 
 
Proof. By example 2, we have f (x) = 
f (1) x for all x∊ℚ. If f (1) = 0, then     
f (x) = f (x·1) = f (x) f (1)=0 for all 
x∊A.  
 
Otherwise, we have f (1) ≠ 0. Since     
f (1) = f (1) f (1), we get f (1) = 1. 
Then  f (x) = x for all x ∊ A ∩ ℚ. 
 
If y ≥  0, then  f (y) = f ( y1/2 )2 ≥  0 and  

 

        f (x + y) = f (x) + f (y) ≥  f (x),  
 

which implies f is increasing. Now for 
any x∊A∖ℚ, by the density of rational 
numbers, there are pn, qn∊ℚ such that pn 
< x < qn, the pn’s increase to x and the 
qn’s decrease to x. As f is increasing, we 
have pn = f (pn) ≤  f (x) ≤  f (qn) = qn. 
Taking limits, the sandwich theorem 
gives f (x) = x for all x∊A. 
 
Fact 2. If a function  f : ( 0, ∞ ) → ℝ 
satisfies  f  (xy) = f  (x) f ( y) for all x, y > 
0 and f is monotone, then either f(x)=0 
for all x > 0 or there exists c such that       
f (x) = xc for all x > 0. 
 
Proof. For x > 0, f (x) = f (x1/2)2 ≥  0. Also 
f (1) = f (1) f (1) implies f (1) = 0 or 1. If 
f (1) = 0, then f (x) = f (x) f (1) = 0 for all 
x > 0.  If f (1) = 1, then f (x) > 0 for all x > 
0 (since  f (x) = 0 implies f (1) = f (x(1/x)) 
=  f (x) f (1/x) = 0, which would lead to a 
contradiction).   
 
Define g: ℝ→ℝ by g (w) = ln  f (ew ). 
Then  

 
g (x+y) = ln  f (ex+y) = ln  f (ex ey) 
             =ln  f (ex) f (ey)  
             = ln  f (ex) + ln  f (ey) 
             = g(x) + g(y). 

 
Since f is monotone, it follows that g is 
also monotone. Then g (w) = cw for all w. 
Therefore, f (x) = xc for all x > 0. 
 
As an application of these facts, we look 
at the following example. 
 
Example 4. (2002 IMO) Find all 
functions f from the set ℝ of real 
numbers to itself such that  

 
      ( f (x) + f (z))( f (y) + f (t)) 
    = f ( xy − zt ) + f ( xt + yz ) 

 
for all x, y, z, t in ℝ. 
 
Solution. (Due to Yu Hok Pun, 2002 
Hong Kong IMO team member, gold 
medalist) Suppose f (x) = c for all x. 
Then the equation implies 4c2 = 2c. So c 
can only be 0 or 1/2. Reversing steps, we 
can also check  f (x) = 0 for all x or f (x) = 
1/2 for all x are solutions. 
 
Suppose the equation is satisfied by a 
nonconstant function f. Setting x = 0 and 
z = 0, we get 2 f (0) (f (y) + f(t)) = 2 f (0), 
which implies f (0) = 0 or  f (y) + f (t) = 1 
for all y, t. In the latter case, setting y = t, 
we get the constant function f (y) = 1/2 
for all y. Hence we may assume f (0) = 0. 
 
 Setting y = 1, z = 0, t = 0, we get f (x) f (1) 

= f (x). Since f (x) is not the zero 
function, f (1) = 1. Setting z = 0, t = 0, 
we get f (x) f (y) = f (xy) for all x,y. In 
particular, f (w) = f (w1/2)2 ≥  0 for       
w > 0. 
 
Setting x = 0, y = 1 and t = 1, we have  
2 f (1) f (z) = f (−z) +  f (z), which 
implies f (z) =  f (−z) for all z. So f is 
even. 
 
Define the function g: (0, ∞) →ℝ by  
g(w)= f (w1/2) ≥  0. Then for all x,y>0, 

 
   g (xy) = f ((xy)1/2) = f (x1/2 y1/2) 
             = f (x1/2) f (y1/2) = g (x) g (y). 
 
Next f is even implies g (x2) = f (x) for 
all x. Setting z = y, t = x in the given 
equation, we get 

 
( g (x2) + g (y2) )2 = g ( (x2 + y2)2 ) 
                            = g ( x2 + y2 )2 

 
for all x,y. Taking square roots and 
letting a = x2, b = y2, we get g(a)+g (b) 
= g(a+ b) for all a, b > 0. 
 
By fact 1, we have g (w) = w for all w 
> 0. Since f (0) = 0 and f is even, it 
follows f (x) = g (x2) = x2 for all x.  
 
Check: If f (x) = x2, then the equation 
reduces to 

 
(x2 + z2)(y2 + t2) = (xy−zt)2 + (xt+yz)2, 

 
which is a well known identity and 
can easily be checked by expansion 
or seen from | p |2 | q |2 = | pq |2, where 
p = x + iz, q = y + it ∊ℂ.  
 
The concept of fixed point of a 
function is another useful idea in 
solving some functional equations. 
Its definition is very simple. We say 
w is a fixed point of a function f if and 
only if w is in the domain of  f and       
f (w) = w.  Having information on the 
fixed points of functions often help to 
solve certain types of functional 
equations as the following examples 
will show. 
 
Example 5. (1983 IMO) Determine 
all functions f : ℝ+ → ℝ+ such that      
f ( x f  (y) ) = y f (x) for all  x, y ∊ ℝ+ 
and as x → + ∞ ,   f (x) → 0. 
 
Solution. Step 1 Taking x = 1 = y, we 
get f ( f (1)) = f (1). Taking x = 1 and y 
= f (1), we get f ( f ( f (1))) = f (1)2. 
Then f (1)2 = f ( f ( f (1))) = f ( f (1)) = 
f (1), which implies f (1) = 1. So 1 is a 
fixed point of f. 
                            (continued on page 4) 
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Problem Corner  
We welcome readers to submit their 
solutions to the problems posed below 
for publication consideration. The 
solutions should be preceded by the 
solver’s name, home (or email) address 
and school affiliation.  Please send 
submissions to Dr. Kin Y. Li, 
Department of Mathematics, The Hong 
Kong University of Science & 
Technology, Clear Water Bay, Kowloon.  
The deadline for submitting solutions 
is February 28, 2003. 
 
Problem 171.  (Proposed by Ha Duy 
Hung, Hanoi University of Education, 
Hanoi City, Vietnam) Let a, b, c be 
positive integers, [x] denote the 
greatest integer less than or equal to x 
and min{x,y} denote the minimum of x 
and y.  Prove or disprove that   

.1,1min
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−





ba
c

b
c

a
c

ab
cc

 
Problem 172.  (Proposed by  José Luis 
Díaz-Barrero, Universitat Politècnica 
de Catalunya, Barcelona, Spain) Find 
all positive integers such that they are 
equal to the square of the sum of their 
digits in base 10 representation. 
 
Problem 173.   300 apples are given, 
no one of which weighs more than 3 
times any other. Show that the apples 
may be divided into groups of 4 such 
that no group weighs more than 3/2 
times any other group. 
 
Problem 174.  Let M be a point inside 
acute triangle ABC. Let A′, B′, C′ be the 
mirror images of M with respect to BC, 
CA, AB, respectively. Determine (with 
proof) all points M such that A, B, C, A′, 
B′, C′ are concyclic.  
 
Problem 175.  A regular polygon with 
n sides is divided into n isosceles 
triangles by segments joining its center 
to the vertices.  Initially, n + 1 frogs are 
placed inside the triangles. At every 
second, there are two frogs in some 
common triangle jumping into the 
interior of the two neighboring 
triangles (one frog into each neighbor). 
Prove that after some time, at every 
second, there are at least [ (n + 1) / 2 ] 
triangles, each containing at least one 
frog.  
 
              ***************** 

Solutions 
**************** 

 
In the last issue, problems 166, 167 and 
169 were stated incorrectly. They are 
revised as problems 171, 172, 173, 
respectively. As the problems became  
easy due to the mistakes, we received 
many solutions. Regretfully we do not 
have the space to print the names and 
affiliations of all solvers. We would like to 
apologize for this. 
  
Problem 166.  Let a, b, c be positive 
integers, [x] denote the greatest integer 
less than or equal to x and min{x,y} 
denote the minimum of x and y.  Prove or 
disprove that   
 
c [a/b] – [c/a] [c/b]  ≤  c min{1/a, 1/b}. 
 
Solution. Over 30 solvers disproved the 
inequality by providing different counter- 
examples, such as (a, b, c) = (3, 2, 1).  
 
Problem 167.  Find all positive integers 
such that they are equal to the sum of their 
digits in base 10 representation. 
 
Solution.  Over 30 solvers sent in solutions 
similar to the following. For a positive 
integer N with digits an, … , a0 (from left 
to right), we have 
 
     N = an 10n + an−1 10n−1 + ⋯ + a0 
        ≥  an + an−1 + ⋯ + a0  
because 10k

  > 1 for k> 0. So equality holds 
if and only if an=an−1=⋯=a1=0. Hence, 
N=1, 2, …, 9 are the only solutions. 
 
Problem 168. Let AB and CD be 
nonintersecting chords of a circle and let 
K be a point on CD. Construct (with 
straightedge and compass) a point P on 
the circle such that K is the midpoint of the 
part of segment CD lying inside triangle 
ABP. (Source: 1997 Hungarian Math 
Olympiad) 
 
Solution. SIU Tsz Hang (STFA Leung Kau 
Kui College, Form 7)  
 
Draw the midpoint M of AB. If AB || CD, 
then draw ray MK to intersect the circle at P. 
Let AP, BP intersect CD at Q,R, respectively. 
Since AB || QR, ∆ABP ~ ∆QRP. Then M 
being the midpoint of AB will imply K is the 
midpoint of QR. 
 
 If AB intersects CD at E, then draw the 
circumcircle of EMK meeting the original 
circle at S and S′. Draw the circumcircle of 
BES meeting CD at R. Draw the 
circumcircle of AES meeting CD at Q. Let 
AQ, BR meet at P. Since ∠PBS = ∠RBS = 
∠RES = ∠QES = ∠QAS = ∠PAS, P is on 
the original circle. 
 
Next, ∠SMB = ∠SME = ∠SKE = ∠SKR 
and ∠SBM = 180° − ∠SBE = 180° − ∠SRE 

= ∠SRK imply ∆SMB ~ ∆SKR and 
MB/KR = BS/RS. Replacing M by A and 
K by Q, similarly ∆SAB ~ ∆SQR and 
AB/QR = BS/RS. Since AB = 2MB, we 
get QR = 2KR. So K is the midpoint of 
QR. 
 
Problem 169.  300 apples are given, no 
one of which weighs more than 3 times 
any other. Show that the apples may be 
divided into groups of 4 such that no 
group weighs more than 11/2 times any 
other group. 
 
Solution. Almost all solvers used the 
following argument. Let m and M be 
the weights of the lightest and heaviest 
apple(s). Then 3m≥ M. If the problem 
is false, then there are two groups A 
and B with weights wA and wB such that  
(11/2) wB  < wA. Since 4m≤ wB and wA ≤ 
4M, we get (11/2)4m < 4M implying  
3m≤ (11/2)m < M , a contradiction. 
 
Problem 170.  (Proposed by 
Abderrahim Ouardini, Nice, France) 
For any (nondegenerate) triangle with 
sides a, b, c, let ∑’ h (a, b, c) denote the 
sum h (a, b, c) + h (b, c, a )+ h (c, a, b). 
Let  f (a, b, c) = ∑’ ﴾a / (b + c – a)﴿2 and 
g (a, b, c) =∑’ j(a, b, c), where j(a,b,c)= 
(b + c – a) / ))(( cbabac −+−+ . 
Show that f (a, b, c)≥ max{3,g(a, b, c)} 
and determine when equality occurs. 
(Here max{x,y} denotes the maximum 
of x and y.) 
 
Solution. CHUNG Ho Yin (STFA 
Leung Kau Kui College, Form 6), 
CHUNG Tat Chi (Queen Elizabeth 
School, Form 6), D. Kipp JOHNSON 
(Valley Catholic High School, 
Beaverton, Oregon, USA), LEE Man 
Fui (STFA Leung Kau Kui College, 
Form 6), Antonio LEI (Colchester 
Royal Grammar School, UK, Year 13), 
SIU Tsz Hang (STFA Leung Kau Kui 
College, Form 7), TAM Choi Nang 
Julian (SKH Lam Kau Mow Secondary 
School) and WONG Wing Hong (La 
Salle College, Form 5). 
 
Let x = b + c − a,  y = c + a − b and  z = a + 
b − c. Then  a = (y + z)/2, b = (z + x)/2 and 
c = (x + y)/2.  
 
Substituting these and using the AM-GM 
inequality, the rearrangement inequality 
and the AM-GM inequality again, we find 
 
     f ( a, b, c ) 
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So f (a,b,c)≥ g(a,b,c) = max{3,g(a,b,c)} 
with equality if and only if x = y = z, 
which is the same as a = b = c. 

 
 

 

Olympiad Corner 
(continued from page 1) 

 
Problem 3.  If a ≥ b ≥ c ≥ 0 and a + b + 
c =3, then prove that ab2 + bc2 + ca2 ≤ 
27/8 and determine the equality 
case(s). 
 
Problem 4.  Let p be an odd prime 
such that p ≡ 1 (mod 4). Evaluate  
(with reason) 
 

                      
1

22

1
,

p

k

k
p

−

=

 
 
 

∑  

 
where {x} = x − [x], [x] being the 
greatest integer not exceeding x. 
 
 

 
 
Functional Equations  

(continued from page 2) 
 
Step 2  Taking y = x, we get  f ( x f ( x)) = 
x f (x). So w = x f (x) is a fixed point of  f 
for every  x ∊ ℝ+. 
 
Step 3 Suppose f  has a fixed point x > 1. 
By step 2, x f (x) = x2 is also a fixed 
point, x2 f (x2) = x4 is also a fixed point 
and so on. So the xm’s are fixed points 
for every m that is a power of 2. Since x 
> 1, for m ranging over the powers of 2, 
we have xm → ∞, but f (xm) = xm  → ∞ , 
not to 0. This contradicts the given 
property. Hence, f cannot have any 
fixed point x > 1. 
 
Step 4  Suppose  f  has a fixed point  x in 
the interval (0,1). Then 
 
1 = f ((1/x) x) = f ((1/x) f (x)) = x f (1/ x), 
 
which implies f (1 / x) = 1 / x. This will 
lead to f having a fixed point 1 / x > 1, 
contradicting step 3. Hence, f cannot 

have any fixed point x in (0,1). 
 
Step 5 Steps 1, 3, 4 showed the only fixed 
point of   f is 1. By step 2, we get x f (x) = 1 
for all  x ∊ ℝ+. Therefore, f (x) = 1 / x for 
all x ∊ ℝ+. 
 
Check: For f (x) = 1/x,  f (x f (y)) = f (x/y) = 
y/x =y f (x). As x →∞ , f (x) = 1/x → 0. 
 
Example 6. (1996 IMO) Find all functions f : 
ℕ0 → ℕ0  such that  
 
        f ( m + f (n) ) = f ( f (m) ) + f (n)  
 
for all m, n∊ℕ0.  
Solution. Step 1 Taking m = 0 = n, we get 
f ( f (0)) = f ( f (0) ) + f (0), which implies    
f (0) = 0. Taking m = 0, we get   f ( f ( n )) = 
f (n), i.e. f (n) is a fixed point of f for every 
n ∊ℕ0. Also the equation becomes 
          f ( m +  f (n) ) = f (m) + f (n). 
 
Step 2 If w is a fixed point of  f, then we 
will show kw is a fixed point of  f  for all k 
∊ℕ0. The cases k = 0, 1 are known. If kw 
is a fixed point, then f ((k + 1) w) = f ( kw + 
w ) = f ( kw ) + f (w) = kw + w = (k + 1) w 
and so (k + 1) w is also a fixed point. 
 
Step 3 If 0 is the only fixed point of f, then 
f (n) = 0 for all n ∊ℕ0 by step 1. Obviously, 
the zero function is a solution. 
 
Otherwise,  f  has a least fixed point w > 0. 
We will show the only fixed points are kw, 
k∊ℕ0. Suppose x is a fixed point. By the 
division algorithm, x = kw + r, where 0≤  r 
<w. We have 
 
   x = f (x) = f (r + kw) = f (r + f (kw))  
      = f (r) + f (kw) = f (r) + kw.  
 
So f (r) = x − kw = r. Since w is the least 
positive fixed point, r = 0 and x = kw. 
 
Since f (n) is a fixed point for all n ∊ℕ0 by 
step 1, f (n) = cnw for some cn ∊ ℕ0. We 
have c0 = 0. 
 
Step 4 For n∊ℕ0, by the division 
algorithm, n = kw + r, 0 ≤  r < w. We have 
 
       f (n) = f (r + kw) = f (r + f (kw))  
               = f (r) + f (kw) = crw + kw  
               = (cr+ k) w = (cr + [n/w]) w. 
 
Check: For each w > 0, let c0 = 0 and let 
c1. …, cw−1 ∊ℕ0 be arbitrary. The function 
f(n)=(cr+[n/w])w, where r is the remainder 
of  n divided by w, (and the zero function) 
are all the solutions. Write m = kw + r and  
n = lw + s with 0≤  r, s < w. Then 
 
f (m + f (n)) = f (r + kw + (cs + l) w) 
                    = crw + kw + csw + lw 

                    = f ( f (m) ) + f (n) . 
 
Other than the fixed point concept, in 
solving functional equations, the 
injectivity and surjectivity of the 
functions also provide crucial 
informations. 
 
Example 7. (1987 IMO) Prove that 
there is no function f: ℕ0 → ℕ0  such 
that  f ( f (n)) = n + 1987. 
 
Solution. Suppose there is such a 
function f. Then  f is injective because    
f (a) = f (b) implies 
 
 a = f ( f (a))−1987 = f ( f (b))−1987 = b. 
 
Suppose f (n) misses exactly k distinct 
values c1, … , ck in ℕ0 , i.e. f (n)≠  c1, …, 
ck for all n∊ ℕ0. Then f ( f ( n )) misses 
the 2k distinct values c1, …, ck and          
f (c1), …, f (ck) in ℕ0. (The f (cj)’s are 
distinct because f is injective.) Now if 
w≠ c1, … , ck,  f (c1), … , f (ck), then 
there is m ∊ ℕ0 such that f (m) = w. 
Since w≠  f (cj), m≠  cj, so there is n ∊ 
ℕ0 such that f (n) = m, then f ( f (n)) = w. 
This shows f ( f (n)) misses only the 2k 
values c1, … , ck, f (c1), … , f (ck) and no 
others. Since n + 1987 misses the 1987 
values 0, 1, …, 1986 and 2k ≠ 1987, 
this is a contradiction. 
 
Example 8. (1999 IMO) Determine all 
functions  f : ℝ → ℝ such that 
 
 f (x − f (y)) = f (f (y)) + x f (y) + f (x) − 1 
 
for all x, y ∊ ℝ. 
 
Solution. Let c = f (0). Setting x = y = 0, 
we get f (−c) = f (c) + c − 1. So c≠  0. 
Let A be the range of f, then for x = f (y) 
∊ A, we get c = f (0) = f (x) + x2 + f (x) − 
1. Solving for f (x), this gives f (x) =    
( c + 1 − x2 ) / 2 . 
 
Next, if we set y = 0, we get  
 
         { f (x − c) − f (x) : x ∊ ℝ }  
      = { cx + f ( c ) − 1 : x ∊ ℝ } = ℝ    
 
because c≠  0. Then  A − A = { y1 − y2 :  
y1, y2  ∊ A} = ℝ. 
 
Now for an arbitrary x∊ℝ, let y1, y2∊A 
be such that  y1 − y2 = x. Then 
 
f (x)= f (y1−y2) = f (y2) + y1y2 + f (y1) − 1 
      = (c+1−y2

2)/2+y1y2+(c+1−y1
2)/2 −1 

      = c − ( y1−y2)2/2 = c − x2/2. 
 
However, for x∊A, f (x) = (c + 1 − x2)/2. 
So c = 1. Therefore,  f (x) = 1 − x2/2  for 
all x ∊ℝ. 
 
Check: For f (x) = 1 − x2/2, both sides 
equal 1/2 + y2/2 − y4/8 + x−xy2/2 − x2/2. 


