
 

Volume 9, Number 1 January 2004 – April 2004 

Geometry via Complex Numbers 
Kin Y. Li 

 
Olympiad Corner 
 
The Sixth Hong Kong (China) 
Mathematical Olympiad took place on 
December 20, 2003.  Here are the 
problems.  Time allowed: 3 hours 

 
Problem 1.  Find the greatest real K such 
that for every positive u, v and w with u2 > 
4vw, the inequality  

(u2 - 4vw)2 > K(2v2 - uw)(2w2 - uv) 
holds.  Justify your claim. 

 
Problem 2.  Let ABCDEF be a regular 
hexagon of side length 1, and O be the 
center of the hexagon. In addition to the 
sides of the hexagon, line segments are 
drawn from O to each vertex, making a 
total of twelve unit line segments. Find 
the number of paths of length 2003 along 
these line segments that start at O and 
terminate at O.  

 
Problem 3.  Let ABCD be a cyclic 
quadrilateral.  K, L, M, N are the 
midpoints of sides AB, BC, CD and DA 
respectively.  Prove that the orthocentres 
of triangles AKN, BKL, CLM, DMN are 
the vertices of a parallelogram. 
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Complex numbers are wonderful.  In this 
article we will look at some applications 
of complex numbers to solving geometry 
problems.  If a problem involves points 
and chords on a circle, often we can 
without loss of generality assume it is the 
unit circle.  In the following discussion, 
we will use the same letter for a point to 
denote the same complex number in the 
complex plane.  To begin, we will study 
the equation of lines through points. 
Suppose Z is an arbitrary point on the 
line through W1 and W2.  Since the vector 
from W1 to Z is a multiple of the vector 
from W1 to W2, so in terms of complex 
numbers, we get Z − W1 = t(W2 −W1) for 
some real t. Now t t =  and so 
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Reversing the steps, we can see that 
every Z satisfying the equation 
corresponds to a point on the line 
through W1 and W2.  So this is the 
equation of a line through two points in 
the complex variable Z. 
 
Next consider the line passing through a 
point C and perpendicular to the line 
through W1 and W2.  Let Z be on this line.  
Then the vector from C to Z is 
perpendicular to the vector from W1 to 
W2.  In terms of complex numbers, we get 
Z − C = it(W2 − W1) for some real t.  So  
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Again reversing steps, we can conclude this 
is the equation of the line through C 
perpendicular to the line through W1 and W2.  
In case the points W1 and W2 are on the 
unit circle, we have 2211 1 WWWW == .  
Multiplying the numerators and 
denominators of the right sides of the 
two displayed equations above by W1W2, 
we can simplify them to 

2121 WWZWWZ +=+  
and      CWWCZWWZ 2121 −=−  
respectively. 

By moving W2 toward W1 along the unit 
circle, in the limit, we will get the 
equation of the tangent line at W1 to the 
unit circle.  It is 1

2
1 2WZWZ =+ . 

Similarly, the equation of the line 
through C perpendicular to this tangent  

line is CWCZWZ 2
1

2
1 −=− . 

For a given triangle A1A2A3 with the unit 
circle as its circumcircle, in terms of 
complex numbers, its circumcenter is the 
origin O, its centroid is G = (A1 + A2 + 
A3)/3, its orthocenter is H = A1 + A2 + A3 
(because OH = 3OG) and the center of its 
nine point circle is N = (A1 + A2 + A3)/2 
(because N is the midpoint of OH). 

Let us proceed to some examples. 
 
Example 1.  (2000 St. Petersburg City 
Math Olympiad, Problem Corner 188) 
The line S is tangent to the circumcircle 
of acute triangle ABC at B.  Let K be the 
projection of the orthocenter of triangle 
ABC onto line S (i.e. K is the foot of 
perpendicular from the orthocenter of 
triangle ABC to S).  Let L be the midpoint 
of side AC.  Show that triangle BKL is 
sosceles. i

 
Solution.  (Due to POON Ming Fung, 
STFA Leung Kau Kui College, Form 6) 
Without loss of generality, let the 
circumcircle of triangle ABC be the unit 
circle on the plane.  Let A = a + bi, B = 
−i, C = c + di.  Then the orthocenter is H 
= A + B + C and K = (a + c) − i, L = (a + 
c)/2 + (b + d)i/2.  Since 

,)2()(
2
1 22 KLdbcaLB =++++=  

triangle BKL is isosceles. 
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Example 2.  Consider triangle ABC and 
its circumcircle S.  Reflect the circle with 
respect to AB, AC and BC to get three new 
circles SAB, SAC and SBC (with the same 
radius as S).  Show that these three new 
circles intersect at a common point.  
Identify this point. 
 
Solution.  Without loss of generality, we 
may assume S is the unit circle.  Let the 
center of SAB be O´, then O´ is the mirror 
image of O with respect to the segment 
AB. So O´ = A + B (because segments 
OO´ and AB bisect each other).  Similarly, 
the centers of SAC and SBC  are A + C and B 
+ C respectively.  We need to show there 
is a point Z such that Z is on all three new 
circles, i.e. 

|Z − (A + B)| = |Z − (A + C)| 
= |Z − (B + C)| = 1. 

We easily see that the orthocenter of 
triangle ABC, namely Z = H = A + B + C, 
satisfies these equations.  Therefore, the 
three new circles intersect at the 
orthocenter of triangle ABC. 
 
Example 3.  A point A is taken inside a 
circle.  For every chord of the circle 
passing through A, consider the 
intersection point of the two tangents at 
the endpoints of the chord.  Find the locus 
of these intersection points. 
 
Solution.  Without loss of generality we 
may assume the circle is the unit circle 
and A is on the real axis.  Let WX be a 
chord passing through A with W and X on 
the circle.  The intersection point Z of the 
tangents at W and X satisfies 

WZWZ 22 =+  and XZXZ 22 =+ .  
Solving these equations together for Z, we 
find )/(2 XWZ += . 
 
Since A is on the chord WX, the real 
number A satisfies the equation for line 
WX, i.e. A + WXA = W + X.  Using 

X X   WW == 1 , we see that 
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So the locus lies on the vertical line 
through 1/A. 
Conversely, for any point Z on this line, 
draw the two tangents from Z to the unit 
circle and let them touch the unit circle at 
the point W and X.  Then the above 
equations are satisfied by reversing the 
argument.  In particular, A + WXA = W + 
X and so A is on the chord WX.  Therefore, 
the locus is the line perpendicular to OA 
at a distance 1/OA from O. 

Example 4.  Let A1, A2, A3 be the 
midpoints of W2W3, W3W1, W1W2 
respectively.  From Ai drop a 
perpendicular to the tangent line to the 
circumcircle of triangle W1W2W3 at Wi. 
Prove that these perpendicular lines are 
concurrent.  Identify this point of 
oncurrency. c

 
Solution.  Without loss of generality, let 
the circumcircle of triangle W1W2W3 be 
the unit circle.  The line perpendicular to 
the tangent at W1 through A1 = (W2 + W3)/2 
has equation 

22
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1
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1
WWWWWZWZ +

−
+

=− . 

Using 111 =WW , we may see that the right 
side is the same as 

22
3212

1
321 WWWWWWW ++
−

++ . 

From this we see that N = (W1 + W2 + 
W3)/2 satisfies the equation of the line and 
so N is on the line.  Since the expression 
for N is symmetric with respect to W1, W2, 
W3, we can conclude that N will also lie on 
the other two lines.  Therefore, the lines 
concur at N, the center of the nine point 
ircle of triangle W1W2W3. c

 
Example 5.  (Simson Line Theorem)  Let 
W be on the circumcircle of triangle 
Z1Z2Z3 and P, Q, R be the feet of the 
perpendiculars from W to Z3Z1, Z1Z2, Z2Z3 
respectively.  Prove that P, Q, R are 
collinear.  (This line is called the Simson 
line of triangle Z1Z2Z3 from W.) 
 
Solution.  Without loss of generality, we 
may assume the circumcircle of triangle 
Z1Z2Z3 is the unit circle. 
Then 1321 ==== WZZZ .  Now P is 
on the line Z3Z1 and the line through W 
perpendicular to Z3Z1.  So P satisfies the 
equations 3131 ZZPZZP +=+  and P – 

WZZWPZZ 3131 −= .  Solving these 
together for P, we get 

2
3131 WZW - Z  Z Z

P 
++

= . 

Similarly, 

2
2121 WZW - Z  Z Z

Q 
++

=  

and 

2
3232 WZW - Z  Z Z

R 
++

= . 

To show P, Q, R are collinear, it suffices to 
check that 

R-Q
R-P

Q-R
P-R

= . 

Now the right side is 

WZZ W ZZ - Z - Z
WZZ W ZZ - Z - Z

322131

323121
+

+ . 

Multiplying the numerator and 
denominator by WZZZ 321  and using 

W W ZZ ii == 1 , we get 

.
132132

123132
ZZWZZWZZ
ZZWZZWZZ

+−−
+−−  

This equals the left side (P − R)/(Q − R) 
and we complete the checking. 
 
Example 6. (2003 IMO, Problem 4) Let 
ABCD be a cyclic quadrilateral.  Let P, Q 
and R be the feet of the perpendiculars 
from D to the lines BC, CA and AB 
respectively.  Show that PQ = QR if and 
only if the bisectors of ABC∠  and 

ADC∠  meet on AC. 
 
Solution.  (Due to SIU Tsz Hang, 2003 
Hong Kong IMO team member)  Without 
loss of generality, assume A, B, C, D lies 
on the unit circle and the perpendicular 
bisector of AC is the real axis.  Let A = 
cosθ + isin θ, then θθ sincos iAC −==  
so that AC = 1 and A + C = 2cosθ.  Since 
the bisectors of  and ABC∠ ADC∠  pass 
through the midpoints of the major and 
minor arc AC, we may assume the 
bisectors of ∠ABC and ∠ADC pass 
through 1 and −1 respectively.  Let AC 
intersect the bisector of ∠ABC at Z, then 
Z satisfies CAZACZ +=+ , (which is 

θcos2=+ ZZ ), and 1+=+ BZBZ . 
Solving for Z, we get 

1
1cos2

B 
BBZ 

−
−−

=
θ . 

Similarly, the intersection point Z ′  of AC 
with the bisector of ∠ADC is 

1
1cos2'

+
−+

=
D

DDZ θ . 

Next, R is on the line AB and the line 
through D perpendicular to AB.  So 

BARABR +=+  and DABDRABR −=− .  
Solving for R, we find 

2
DABDBAR −++

= . 

Similarly, 

2
DBCDCBP −++

=  

and 

2
DCADACQ −++

= . 

(continued on page 4) 
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Problem Corner 
 
We welcome readers to submit their 
solutions to the problems posed below 
for publication consideration.  The 
solutions should be preceded by the 
solver’s name, home (or email) address 
and school affiliation.  Please send 
submissions to Dr. Kin Y. Li, 
Department of Mathematics, The Hong 
Kong University of Science & 
Technology, Clear Water Bay, Kowloon, 
Hong Kong.  The deadline for 
submitting solutions is May 25, 2004. 
 
Problem 196.  (Due to John 
PANAGEAS, High School “Kaisari”, 
Athens, Greece)  Let  be 
positive real numbers with sum equal 
to 1.  Prove that for every positive 
integer m, 

nxxx ,...,, 21

)....( 21
m
n

mmm xxxnn +++≤  

 
Problem 197.  In a rectangular box, the 
length of the three edges starting at the 
same vertex are prime numbers.  It is 
also given that the surface area of the 
box is a power of a prime.  Prove that 
exactly one of the edge lengths is a 
prime number of the form 2k - 1. 
 
Problem 198.  In a triangle ABC, AC = 
BC. Given is a point P on side AB such 
that ∠ACP = 30∘.  In addition, point 
Q outside the triangle satisfies ∠CPQ 
=  ∠CPA + ∠APQ = 78∘.  Given that 
all angles of triangles ABC and QPB, 
measured in degrees, are integers, 
determine the angles of these two 
triangles. 
 
Problem 199.  Let R+ denote the 
positive real numbers.  Suppose 

is a strictly decreasing 
function such that for all , 

++ → RRf :
+∈Ryx,

           f (x + y) + f (f (x) + f (y))  
= f (f (x + f (y)) + f (y + f (x))). 

Prove that f (f (x)) = x for every x > 0. 
(Source: 1997 Iranian Math 
Olympiad) 
 
Problem 200.  Aladdin walked all over 
the equator in such a way that each 
moment he either was moving to the 
west or was moving to the east or 
applied some magic trick to get to the 
opposite point of the Earth.  We know 
that he travelled a total distance less 
than half of the length of the equator 
altogether during his westward moves. 

Prove that there was a moment when the 
difference between the distances he had 
covered moving to the east and moving to 
the west was at least half of the length of 
the equator. 
 

***************** 
Solutions 

**************** 
Due to an editorial mistake in the last 
issue, solutions to problems 186, 187, 188 
by POON Ming Fung (STFA Leung Kau 
Kui College, Form 6) were overlooked 
and his name was not listed among the 
solvers.  We express our apology to him 
and point out that his clever solution to 
problem 188 is printed in example 1 of the 
article “Geometry via Complex Numbers” 
in this issue. 
 
Problem 191.  Solve the equation 

.233 +=− xxx  

Solution.  Helder Oliveira de CASTRO 
(ITA-Aeronautic Institue of Technology, 
Sao Paulo, Brazil) and Yufei ZHAO (Don 
Mills Collegeiate Institute, Toronoto, 

anada, Grade 10). C
 
If x < -2, then the right side of the equation 
is not defined. If x > 2, then 

.2
4

4
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3

+>>

−++
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xxxxxx
 

So the solution(s), if any, must be in [-2, 2].  
Write x = 2 cos a, where π≤≤ a0 .  The 
equation becomes 

.2cos2cos6cos8 3 +=− aaa  
Using the triple angle formula on the left 
side and the half angle formula on the right 
side, we get 

).0(
2

cos23cos2 ≥=
aa  

Then 3a ± (a/2) = 2nπ for some integer n. 
Since 3a ± (a/2) ∈  [-π/2, 7π /2], we get 
n = 0 or 1.  We easily checked that a = 0, 

5/4π , 4π/7 yield the only solutions x = 2, 
2cos(4π/5), 2cos(4π/7). 
 
Other commended solvers: CHUNG Ho 
Yin (STFA Leung Kau Kui College, Form 
7), LEE Man Fui (CUHK, Year 1), 
LING Shu Dung, POON Ming Fung 
(STFA Leung Kau Kui College, Form 6), 
SINN Ming Chun (STFA Leung Kau Kui 
College, Form 4), SIU Ho Chung 
(Queen’s College, Form 5), TONG Yiu 
Wai (Queen Elizabeth School), YAU Chi 
Keung (CNC Memorial College, Form 7) 
and YIM Wing Yin (South Tuen Mun 
Government Secondary School, Form 4). 

Problem 192.  Inside a triangle ABC, 
there is a point P satisfies ∠PAB = ∠
PBC = ∠PCA = φ.  If the angles of the 
triangle are denoted by α, β and γ, 
prove that  

γβαϕ 2222 sin
1

sin
1

sin
1

sin
1

++= . 

Solution.  LEE Tsun Man Clement (St. 
Paul’s College), POON Ming Fung (STFA 
Leung Kau Kui College, Form 6), SIU Ho 
Chung (Queen’s College, Form 5) and 
Yufei ZHAO (Don Mills Collegiate 
nstitute, Tornoto, Canada, Grade 10). I

 
Let AP meet BC at X.  Since ∠XBP = ∠
BAX and ∠BXP = ∠AXB, triangles 
XPB and XBA are similar.  Then XB/XP = 
XA/XB.  Using the sine law and the last 
equation, we have 
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XAXP

=
⋅

= 2
 

Using [ ] to denote area, we have 
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][

][
][

ABC
BPC

XCA
XCP

XBA
XBP

XA
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===  

Combining the last two equations, we 
have   By 
similar arguments, we have 

]./[][sin/sin 22 ABCBPC=βϕ

1
][
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][

sin
sin

sin
sin

sin
sin  2

2

2

2

2

2

==

++=

++

ABC
ABC

ABC
CPA

ABC
BPC

ABC
APB

γ
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The result follows. 
Other commended solvers: CHENG Tsz 
Chung (La Salle College, Form 5), LEE 
Man Fui (CUHK, Year 1) and Achilleas 
P. PORFYRIADIS (American College 
of Thessaloniki “Anatolia”, Thessaloniki, 
Greece). 

Comments: Professor Murray 
KLAMKIN (University of Alberta, 
Edmonton, Canada) informed us that the 
result csc2 φ = csc2 α + csc2 β + csc2 γ in the 
problem is a known relation for the 
Brocard angle φ of a triangle.  Also 
known is cot φ = cot α + cot β + cot γ.  He 
mentioned these relations and others are 
given in R.A. Johnson, Advanced 
Euclidean Geometry, Dover, N.Y., 1960, 
pp. 266-267.  (For the convenience of 
interested readers, the Chinese translation 
of this book can be found in many 
bookstore.–Ed) LEE Man Fui and 
Achilleas PORFYRIADIS gave a proof 
of the cotangent relation and use it to 
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derive the cosecant relation, which is the 
equation in the problem, by trigonometric 

anipulations. m
 
Problem 193.  Is there any perfect square, 
which has the same number of positive 
divisors of the form 3k + 1 as of the form 
3k + 2?  Give a proof of your answer. 
Solution 1.  K.C. CHOW (Kiangsu-Chekiang 
College Shatin, Teacher), LEE Tsun Man 
Clement (St. Paul’s College), SIU Ho Chung 
(Queen’s College, Form 5) and Yufei ZHAO 
(Don Mills Collegiate Institute, Toronto, 
Canada, Grade 10). 
 
No.  For a perfect square m2, let m = 3ab 
with b not divisible by 3.  Then m2 = 32ab2.  
Observe that divisors of the form 3k + 1 
or 3k + 2 for m2 and for b2 consist of the 
same numbers because they cannot have 
any factor of 3.  Since b2 has an odd 
number of divisors and they can only be 
of the form 3k + 1 or 3k + 2, so the 
number of divisors of the form 3k + 1 
cannot be the same as the number of 
divisors of the form 3k + 2.  Therefore, 
the same is true for m2. 
 
Solution 2.  Helder Oliveira de CASTRO 
(ITA-Aeronautic Institute of Technology, Sao 
Paulo, Brazil), LEE Man Fui (CUHK, Year 
1), LING Shu Dung, POON Ming Fung 
(STFA Leung Kau Kui College, Form 6), 
Achilleas P. PORFYRIADIS (American 
College of Thessaloniki “Anatolia”, 
Thessaloniki, Greece), Alan T.W. WONG 
(Markham, Ontario, Canada) and YIM Wing 
Yin (South Tuen Mun Government Secondary 

chool, Form 4). S
 
No.  For a perfect square, its prime 
factorization is of the form 

···.  Let x, y, z be the number 
of divisors of the form 3k, 3k + 1, 3k + 2 
for this perfect square respectively.  Then 
x + y + z = (2e1 + 1) (2e2 + 1) (2e3 + 1) ··· is 
odd.  Now divisor of the form 3k has at 
least one factor 3, so x = (2e1 + 1) (2e2) 
(2e3 + 1) ··· is even.  Then y + z is odd.  
Therefore y cannot equal z. 

321 222 532 eee

 
Other commended solvers: CHENG Tsz 
Chung (La Salle College, Form 5) and YEUNG 
Wai Kit (STFA Leung Kau Kui College). 
 
Problem 194.  (Due to Achilleas Pavlos 
PORFYRIADIS, American College of 
Thessaloniki “Anatolia”, Thessaloniki, 
Greece)  A circle with center O is 
internally tangent to two circles inside it, 
with centers O1 and O2, at points S and T 
respectively.  Suppose the two circles 
inside intersect at points M, N with N 
closer to ST.  Show that S, N, T are 
collinear if and only if SO1/OO1 = 
OO2/TO2.  
Solution.  CHENG Tsz Chung (La Salle 
College, Form 5), K. C. CHOW 

(Kiangsu-Chekiang College Shatin, Teacher), 
Helder Oliveira de CASTRO 
(ITA-Aeronautic Institute of Technology, Sao 
Paulo, Brazil), LEE Tsun Man Clement (St. 
Paul’s College), LING Shu Dung, POON 
Ming Fung (STFA Leung Kau Kui College, 
Form 6), SIU Ho Chung (Queen’s College, 
Form 5), YEUNG Wai Kit (STFA Leung Kau 
Kui College), Yufei ZHAO (Don Mills 
Collegiate Institute, Toronto, Canada, Grade 10) 
and the proposer. 

If S, N, T are collinear, then triangles SO1N 
and SOT are isosceles and share the 
common angle OST, which imply they are 
similar.  Thus ∠SO1N = ∠SOT and so 
lines O1N and OT are parallel.  Similarly, 
lines O2N and OS are parallel.  Hence, 
OO1NO2 is a parallelogram and OO2 = 
O1N = O1S, OO1 = O2N = O2T.  Therefore, 
SO1/OO1 = OO2/TO2.  Conversely, if 
SO1/OO1 = OO2/TO2, then using OO1 = OS 
− O1S and OO2 = OT − O2T, we get 

,
2

2

1

1
TO

TOOT
SOOS

SO −
=

−
 

which reduces to O1S + O2T = OS.  Then 
OO1 = OS − O1S = O2T = O2N and OO2 = 
OT − O2T = O1S = O1N.  Hence OO1NO2 is 
again a parallelogram. Then 

.180
2
1

2
1

   

2211

2211

2211

°=

∠+∠+∠=

∠+∠+∠=
∠+∠+∠

NOONOONOO

TNONOOSNO
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Therefore, S, N, T are collinear. 
 
Other commended solver: TONG Yiu 
Wai (Queen Elizabeth School). 
 
Problem 195.  (Due to Fei Zhenpeng, 
Yongfeng High School, Yancheng City, 
Jiangsu Province, China)  Given n (n > 3) 
points on a plane, no three of them are 
collinear, x pairs of these points are 
connected by line segments.  Prove that if 

,
)2(3

3)2)(1(
−

+−−
≥

n
nnnx  

then there is at least one triangle having 
these line segments as edges.  Find all 
possible values of integers n > 3 such that  

)2(3
3)2)(1(

−
+−−

n
nnn  is an integer and 

the minimum number of line segments 
guaranteeing a triangle in the above 
situation is this integer. 
 
Solution.  SIU Ho Chung (Queen’s 
College, Form 5), Yufei ZHAO (Don 
Mills Collegiate Institute, Toronto, 

anada, Grade 10) and the proposer. C
 
For every three distinct points A, B, C, 
form a pigeonhole containing the three 
segments AB, BC, CA.  (Each segment 
may be in more than one pigeonholes.) 

There are  pigeonholes.  For each 
segment joining a pair of endpoints, that 
segment will be in n − 2 pigeonholes.  So 
if , that is 

nC3

12)2( 3 +≥− nCnx

,
)2(3

3)2)(1(
2

12 3
−

+−−
=

−
+

≥
n

nnn
n
Cx

n
 

then by the pigeonhole principle, there is 
at least one triangle having these line 
segments as edges. 

If f (n) = (n(n − 1)(n − 2) + 3) / (3(n − 2)) 
is an integer, then 3(n − 2) f (n) = n(n − 
1)(n − 2) + 3 implies 3 is divisible by n − 
2.  Since n > 3, we must have n = 5.  Then 
f (5) = 7.  For the five vertices A, B, C, D, 
E of a regular pentagon, if we connected 
the six segments BC, CD, DE, EA, AC, 
BE, then there is no triangle.  So a 
minimum of f (5) = 7 segments is needed 
to get a triangle. 
 
Other commended solvers: K. C. CHOW 
(Kiangsu-Chekiang College Shatin, 
Teacher) and POON Ming Fung (STFA 
Leung Kau Kui College, Form 6). 
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(continued from page 1) 
 
Problem 4.  Find, with reasons, all 
integers a, b, and c such that 

2
1 (a + b) (b + c) (c + a) + (a + b + c)3 

= 1 – abc. 
 

 
 
Geometry via Complex Numbers 

(continued from page 2) 
 

By Simson’s theorem, P, Q, R are 
collinear. So PQ = QR if and only if Q = 
(P + R)/2.  In terms of A, B, C, D, this may 
be simplified to 

DBC)ABCA(BAC −−=−+ 22 . 

In terms of B, D, θ, this is equivalent to 
(2cosθ − 2B)D = 2 − 2Bcos θ.  This is 
easily checked to be the same as 

1
1cos2

1
1cos2

+
−+

=
−

−−
D

DD
B

B θθ , 

i.e. 'ZZ = . 

Comments:  The official solution by 
pure geometry is shorter, but it takes a 
fair amount of time and cleverness to 
discover. Using complex numbers as 
above reduces the problem to straight 
computations. 
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