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                                 Homothety 
 

                                                Kin Y. Li 

 

 

Olympiad Corner 
 

The Czech-Slovak-Polish Match this 

year took place in Bilovec on June 

21-22, 2004.Here are the problems.   
 

Problem 1. Show that real numbers p, q, 

r satisfy the condition 
 
           p

4
(q – r)

2 
+ 2p

2
(q + r) + 1 = p

4
 

 
   if and only if the quadratic equations  
 
        x

2 
+ px + q = 0 and y

2
 – py + r = 0 

 
have real roots (not necessarily distinct) 

which can be labeled by x1, x2 and y1, y2, 

respectively, in such way that the 

equality x1y1 – x2y2 = 1 holds. 
 

Problem 2. Show that for each natural 

number k there exist at most finitely 

many triples of mutually distinct primes 

p, q, r for which the number qr – k is a 

multiple of p, the number pr – k is a 

multiple of q, and the number pq – k is a 

multiple of r. 
 

Problem 3. In the interior of a cyclic 

quadrilateral ABCD, a point P is given 

such that  |∠BPC|=|∠BAP|+|∠PDC|. 

Denote by E, F and G the feet of the 

perpendiculars from the point P to the 

lines AB, AD and DC, respectively. 

Show that the triangles FEG and PBC 

are similar. 
                               (continued on page 4) 
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A geometric transformation of the 
plane is a function that sends every 
point on the plane to a point in the same 
plane. Here we will like to discuss one 
type of geometric transformations, 
called homothety, which can be used to 
solve quite a few geometry problems in 
some international math competitions. 

 
A homothety with center O and ratio k 

is a function that sends every point X 

on the plane to the point X’ such that  
 

                 ' .OX k OX=

uuuur uuur
 

 
So if |k| > 1, then the homothety is a 
magnification with center O. If |k| < 1, 
it is a reduction with center O. A 
homothety sends a figure to a similar 
figure. For instance, let D, E, F be the 
midpoints of sides BC, CA, AB 
respectively of ∆ABC. The homothety 
with center A and ratio 2 sends ∆AFE 
to ∆ABC. The homothety with center at 
the centroid G and ratio –1/2 sends 
∆ABC to ∆DEF. 
 
Example 1. (1978 IMO) In ∆ABC, AB 
= AC. A circle is tangent internally to 
the circumcircle of ABC and also to the 
sides AB, AC at P, Q, respectively. 
Prove that the midpoint of segment PQ 
is the center of the incircle of ∆ABC. 

         D

A

B' C'

O

P QI

B C

 
Solution. Let O be the center of the 

circle. Let the circle be tangent to the 

circumcircle of ∆ABC at D. Let I be the 

midpoint of PQ. Then A, I, O, D are 

collinear by symmetry. Consider the 

homothety with center A that sends 

∆ABC to ∆AB’C’ such that D is on 

B’C’. Thus, k=AB’/AB. As right 

triangles AIP, ADB’, ABD, APO are 

similar, we have 
 

      AI /AO = (AI / AP)(AP / AO) 

  = (AD /AB’)(AB /AD) = AB/AB’=1/k.  

  

Hence the homothety sends I to O. 

Then O being the incenter of ∆AB’C’ 

implies I is the incenter of ∆ABC. 
 
Example 2. (1981 IMO) Three 

congruent circles have a common point 

O and lie inside a given triangle. Each 

circle touches a pair of sides of the 

triangle. Prove that the incenter and the 

circumcenter of the triangle and the 

point O are collinear. 

       

A

B C

A'

B'

O

C'

 
Solution. Consider the figure shown. 
Let A’, B’, C’ be the centers of the 
circles. Since the radii are the same, so 
A’B’ is parallel to AB, B’C’ is parallel to 
BC, C’A’ is parallel to CA. Since AA’, 
BB’ CC’ bisect ∠ A, ∠ B, ∠ C 
respectively, they concur at the incenter 
I of ∆ABC. Note O is the circumcenter 
of ∆A’B’C’ as it is equidistant from A’, 
B’, C’. Then the homothety with center I 
sending ∆A’B’C’ to ∆ABC will send O 
to the circumcenter P of ∆ABC. 
Therefore, I, O, P are collinear. 
 
Example 3. (1982 IMO) A 

non-isosceles triangle A1A2A3 is given 

with sides a1, a2, a3 (ai is the side 

opposite Ai). For all i=1, 2, 3, Mi is the 

midpoint of side ai, and Ti is the point 

where the incircle touchs side ai. Denote 

by Si the reflection of Ti in the interior 

bisector of angle Ai.   
Prove that the lines M1S1, M2S2 and M3S3 

are concurrent. 
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Solution. Let I be the incenter of 

∆A1A2A3. Let B1, B2, B3 be the points 

where the internal angle bisectors of  

∠ A1, ∠ A2, ∠ A3 meet a1, a2, a3 

respectively. We will show SiSj is 

parallel to MiMj. With respect to A1B1, 

the reflection of T1 is S1 and the 

reflection of T2 is T3. So ∠T3IS1 = ∠

T2IT1. With respect to A2B2, the 

reflection of T2 is S2 and the reflection 

of T1 is S3. So ∠T3IS2 = ∠T1IT2. Then 

∠ T3IS1 = ∠ T3IS2. Since IT3 is 

perpendicular to A1A2, we get S2S1 is 

parallel to A1A2. Since A1A2 is parallel 

to M2M1, we get S2S1 is parallel to 

M2M1. Similarly, S3S2 is parallel to 

M3M2 and S1S3 is parallel to M1M3.  

 

Now the circumcircle of ∆S1S2S3 is the 

incircle of ∆A1A2A3 and the 

circumcircle of ∆M1M2M3 is the nine 

point circle of ∆A1A2A3. Since ∆A1A2A3 

is not equilateral, these circles have 

different radii. Hence ∆S1S2S3 is not 

congruent to ∆M1M2M3 and there is a 

homothety sending ∆S1S2S3 to 

∆M1M2M3. Then M1S1, M2S2 and M3S3 

concur at the center of the homothety. 

 
Example 4. (1983 IMO) Let A be one 

of the two distinct points of 

intersection of two unequal coplanar 

circles C1 and C2 with centers O1 and 

O2 respectively. One of the common 

tangents to the circles touches C1 at P1 

and C2 at P2, while the other touches C1 

at Q1 and C2 at Q2. Let M1 be the 

midpoint of P1Q1 and M2 be the 

midpoint of P2Q2. Prove that ∠O1AO2 

= ∠M1AM2. 
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Solution. By symmetry, lines O2O1, 

P2P1, Q2Q1 concur at a point O. 

Consider the homothety with center O 

which sends C1 to C2. Let OA meet C1 

at B, then A is the image of B under the 

homothety. Since ∆BM1O1 is sent to 

∆AM2O2, so  ∠M1BO1 = ∠M2AO2. 

Now ∆OP1O1 similar to ∆OM1P1 

implies OO1/OP1 = OP1/OM1. Then  

        OO1 ·OM1 = OP1
2 
 = OA · OB,  

which implies points A, B, M1, O1 are 

concyclic. Then ∠M1BO1 = ∠M1AO1. 

Hence ∠ M1AO1 = ∠ M2AO2. Adding      

∠O1AM2 to both sides, we have ∠O1AO2 

= ∠M1AM2. 

Example 5. (1992 IMO) In the plane let C 

be a circle, L a line tangent to the circle C, 

and M a point on L. Find the locus of all 

points P with the following property: 

there exist two points Q, R on L such that 

M is the midpoint of QR and C is the 

inscribed circle of ∆PQR. 

  

T C
C'

L

P

Q RS

T'

U

M

V

 

Solution. Let L be the tangent to C at S. 

Let T be the reflection of S with respect to 

M. Let U be the point on C diametrically 

opposite S. Take a point P on the locus. 

The homothety with center P that sends C 

to the excircle C’ will send U to T’, the 

point where QR touches C’. Let line PR 

touch C’ at V. Let s be the semiperimeter 

of ∆PQR, then  

  TR = QS  = s – PR = PV – PR =VR = T’R  

so that P, U, T are collinear. Then the 

locus is on the part of line UT, opposite 

the ray U T
uuur

.  

Conversely, for any point P on the part of 

line UT, opposite the ray U T
uuur

, the 

homothety sends U to T and T’, so T = T’. 

Then QS = s – PR = PV – PR =VR = T’R = 

TR and QM = QS – MS =TR – MT = RM. 

Therefore, P is on the locus. 

      For the next example, the solution 

involves the concepts of power of a point 

with respect to a circle and the radical axis. 

We will refer the reader to the article 

“Power of Points Respect to Circles,” 

in Math Excalibur, vol. 4, no. 3, pp. 2, 

4. 

Example 6. (1999 IMO) Two circles Γ1 

and Γ2 are inside the circle Γ, and are 

tangent to Γ at the distinct points M and 

N, respectively.  Γ1 passes through the 

center of Γ2. The line passing through 

the two points of intersection of Γ1 and 

Γ2 meets Γ at A and B. The lines MA 

and MB meet Γ1 at C and D, 

respectively. Prove that CD is tangent 

to Γ2. 

    

Γ
ΓΓ

L
A,A'

O
1

C C'

O
2

N

F
E

B
M

D

12

 

Solution. (Official Solution) Let EF be 

the chord of Γ which is the common 

tangent to Γ1 and Γ2 on the same side of 

line O1O2 as A. Let EF touch Γ1 at C’. 

The homothety with center M that 

sends Γ1 to Γ will send C’ to some point 

A’ and line EF to the tangent line L of Γ 

at A’. Since lines EF and L are parallel, 

A’ must be the midpoint of arc FA’E. 

Then ∠A’EC’ = ∠A’FC’ = ∠A’ME. 

So ∆A’EC is similar to ∆A’ME. Then 

the power of A’ with respect to Γ1 is 

A’C’ ·A’M = A’E
2
. Similar, the power 

of A’ with respect to Γ2 is A’F
2
. Since 

A’E = A’F, A’ has the same power with 

respect to Γ1 and Γ2. So A’ is on the 

radical axis AB. Hence, A’ = A. Then   

C’ = C and C is on EF.  

Similarly, the other common tangent to 

Γ1 and Γ2 passes through D. Let Oi be 

the center of Γi. By symmetry with 

respect to O1O2, we see that O2 is the 

midpoint of arc CO2D. Then 

      ∠DCO2  = ∠CDO2  = ∠FCO2.  

This implies O2 is on the angle bisector 

of ∠FCD. Since CF is tangent to Γ2, 

therefore CD is tangent to Γ2. 

            (continued on page 4) 
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Problem Corner 
 
We welcome readers to submit their 

solutions to the problems posed below 

for publication consideration.  The 

solutions should be preceded by the 

solver’s name, home (or email) address 

and school affiliation.  Please send 

submissions to Dr. Kin Y. Li, 

Department of Mathematics, The Hong 

Kong University of Science & 

Technology, Clear Water Bay, Kowloon, 

Hong Kong.  The deadline for 

submitting solutions is January 20, 

2005. 
 
Problem 211. For every a, b, c, d in 

[1,2], prove that 

         4 .
a b c d a c

b c d a b d

+ + +
+ ≤

+ + +

  

(Source: 32
nd

 Ukranian Math 

Olympiad) 
 

Problem 212.  Find the largest positive 

integer N such that if S is any set of 21 

points on a circle C, then there exist N 

arcs of C whose endpoints lie in S and 

each of the arcs has measure not 

exceeding 120°. 
 

Problem 213. Prove that the set of all 

positive integers can be partitioned into 

100 nonempty subsets such that if three 

positive integers a, b, c satisfy a + 99 b 

= c, then at least two of them belong to 

the same subset. 
 
Problem 214. Let the inscribed circle 

of triangle ABC be tangent to sides AB, 

BC at E and F respectively. Let the 

angle bisector of ∠ CAB intersect 

segment EF at K. Prove that ∠CKA is 

a right angle.   
 

Problem 215. Given a 8×8 board. 

Determine all squares such that if each 

one is removed, then the remaining 63 

squares can be covered by 21 3×1 

rectangles.  
 
 

***************** 

Solutions 

**************** 
 

Problem 206.  (Due to Zdravko F. 

Starc, Vršac, Serbia and Montenegro) 

Prove that if a, b are the legs and c is 

the hypotenuse of a right triangle, then 
 

( ) ( ) 2 2 .a b a a b b c c+ + − <  

 
Solution. Cheng HAO (The Second 
High School Attached to Beijing 

Normal University), HUI Jack (Queen’s 
College, Form 5), D. Kipp JOHNSON 
(Valley Catholic School, Teacher, 
Beaverton, Oregon, USA), POON Ming 
Fung(STFA Leung Kau Kui College, 
Form 7), Achilleas P. PORFYRIADIS 
(American College of Thessaloniki “Anatolia”, 
Thessaloniki, Greece), Problem Group 
Discussion Euler-Teorema(Fortaleza, Brazil), 
Anna Ying PUN (STFA Leung Kau Kui 
College, Form 6), TO Ping Leung (St. Peter’s 
Secondary School) and YIM Wing Yin 
(South Tuen Mun Government Secondary 
School, Form 4). 
 

By Pythagoras’ theorem, 
 

2 2( ) ( ) 2 .a b a b a b c+ ≤ + + − =   
 

Equality if and only if a = b. By the 

Cauchy-Schwarz inequality, 
 

         ( ) ( )a b a a b b+ + −  

     2 2( ) ( )a b a b a b≤ + + − +  

     2 2 .c c≤  

For equality to hold throughout, we need 

: : 1 :1a b a b a b+ − = = , which 

is not possible for legs of a triangle. So 

we must have strict inequality.   
 

Other commended solvers: HUDREA 

Mihail (High School “Tiberiu Popoviciu” 

Cluj-Napoca Romania) and TONG Yiu 

Wai (Queen Elizabeth School, Form 7). 

 

Problem 207.  Let A = { 0, 1, 2, …, 9} and 

B1, B2, …, Bk be nonempty subsets of A 

such that Bi and Bj have at most 2 common 

elements whenever i ≠ j. Find the 

maximum possible value of k. 
 
Solution. Cheng HAO (The Second High 
School Attached to Beijing Normal 
University), HUI Jack (Queen’s College, 
Form 5), POON Ming Fung(STFA 
Leung Kau Kui College, Form 7) and 
Achilleas P. PORFYRIADIS (American 
College of Thessaloniki “Anatolia”, 
Thessaloniki, Greece). 
 
 
If we take all subsets of A with 1, 2 or 3 

elements, then these 10 + 45 + 120 = 175 

subsets satisfy the condition. So k ≥ 175.  
 

Let B1, B2, …, Bk satisfying the condition 

with k maximum. If there exists a Bi with 

at least 4 elements, then every 3 element 

subset of Bi cannot be one of the Bj, j ≠ i, 

since Bi and Bj can have at most 2 common 

elements. So adding these 3 element 

subsets to B1, B2, …, Bk will still satisfy the 

conditions. Since Bi has at least four 3 

element subsets, this will increase k, 

which contradicts maximality of k. Then 

every Bi has at most 3 elements. Hence, k 

≤ 175. Therefore, the maximum k is 175.   
 

Other commended solvers: CHAN 
Wai Hung (Carmel Divine Grace 
Foundation Secondary School, Form 
6), LI Sai Ki (Carmel Divine Grace 
Foundation Secondary School, Form 
6), LING Shu Dung, Anna Ying PUN 
(STFA Leung Kau Kui College, Form 6) 
and YIM Wing Yin (South Tuen Mun 
Government Secondary School, Form 
4). 

 

Problem 208. In ∆ABC, AB > AC > BC.  

Let D be a point on the minor arc BC of 

the circumcircle of ∆ABC. Let O be the 

circumcenter of ∆ABC. Let E, F be the 

intersection points of line AD with the 

perpendiculars from O to AB, AC, 

respectively. Let P be the intersection 

of lines BE and CF. If PB = PC + PO, 

then find ∠BAC with proof.  
 
Solution. Achilleas P. PORFYRIADIS 
(American College of Thessaloniki 
“Anatolia”, Thessaloniki, Greece), 
Problem Group Discussion Euler - 
Teorema ( Fortaleza, Brazil) and Anna 
Ying PUN (STFA Leung Kau Kui College, 
Form 6). 
 

     

O

D

A

B C

E

F

P

 

Since E is on the perpendicular bisector 

of chord AB and F is on the 

perpendicular bisector of chord AC, AE 

= BE and AF = CF. Applying exterior 

angle theorem, 
 
     ∠BPC =∠AEP + ∠CFD  

                      = 2 (∠BAD+∠CAD) 

                      = 2∠BAC =∠BOC.  
 
Hence, B, C, P, O are concyclic. By 

Ptolemy’s theorem, 
 
           PB·OC = PC·OB + PO·BC.  
 
Then (PB – PC)·OC = PO·BC. Since 

PB – PC = PO, we get OC = BC and so 

∆OBC is equilateral. Then 
 

     ∠BAC= 1
2
∠BOC = 30° 

 
 
Other commended  solvers: Cheng HAO 
(The Second High School Attached to 
Beijing Normal University), HUI Jack 
(Queen’s College, Form 5), POON 
Ming Fung(STFA Leung Kau Kui 
College, Form 7), TONG Yiu Wai 
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(Queen Elizabeth School, Form 7) and 
YIM Wing Yin (South Tuen Mun 
Government Secondary School, Form 
4). 
 
Problem 209.  Prove that there are 

infinitely many positive integers n such 

that 2
n 
+ 2 is divisible by n and 2

n 
+ 1 is 

divisible by n – 1. 
 
Solution.  D. Kipp JOHNSON (Valley 
Catholic School, Teacher, Beaverton, 
Oregon, USA), POON Ming 
Fung(STFA Leung Kau Kui College, 
Form 7) and Problem Group Discussion 
Euler-Teorema(Fortaleza, Brazil). 
 

As 2
2 
+ 2 = 6 is divisible by 2 and 2

2 
+ 1 

= 5 is divisible by 1, n = 2 is one such 

number.  

 

Next, suppose 2
n 

+ 2 is divisible by n 

and 2
n 
+ 1 is divisible by n – 1. We will 

prove N = 2
n 
+ 2 is another such number. 

Since N – 1 = 2
n 
+ 1= (n – 1)k is odd, so k 

is odd and n is even. Since N = 2
n 
+ 2 =   

2(2
n–1 

+ 1) = nm and n is even, so m must 

be odd. Recall the factorization  
 
    x

i 
+ 1 = (x + 1)(x

i–1 
– x

i–3 
+ … + 1) 

 
for odd positive integer i.  Since k is odd, 

2
N 

+ 2 = 2(2
N–1 

+ 1) = 2(2
(n–1)k 

+ 1)  is 

divisible by 2(2
n–1 

+ 1) = 2
n 

+ 2 = N 

using the factorization above. Since m is 

odd, 2
N 

+ 1 = 2
nm 

+ 1 is divisible by        

2
n 

+ 1 = N – 1. Hence, N is also such a 

number. As N > n, there will be 

infinitely many such numbers.  

 

Problem 210.  Let a1 = 1 and  

               
1

1

2

n
n

n

a
a

a
+

= +   

for n = 1, 2, 3, … . Prove that for every 

integer n > 1,  

                   
2

2

2na −

 

is an integer. 
 
Solution. G.R.A. 20 Problem Group 
(Roma, Italy), HUDREA Mihail (High 
School “Tiberiu Popoviciu” Cluj- 
Napoca Romania), Problem Group 
Discussion Euler – Teorema (Fortaleza, 
Brazil), TO Ping Leung (St. Peter’s 
Secondary School) and YIM Wing Yin 
(South Tuen Mun Government 
Secondary School, Form 4). 
 

Note an = pn / qn, where p1 = q1 = 1, pn+1 = 

pn
2
 + 2qn

2
 , qn+1 = 2pnqn for n = 1, 2, 3, …. 

Then  

2 2 2

22
.

2 2

n

n n n

q

a p q
=

− −

 

It suffices to show by mathematical 

induction that pn
2
 – 2qn

2
 = 1 for n > 1. We 

have p2
2
 – 2q2

2
 = 3

2
 – 2·2

2
 = 1. Assuming 

case n is true, we get 

 pn+1
2
 – 2qn+1

2
 = (pn

2
 + 2qn

2
)

2
 –2(2pnqn)  

                       = (pn
2
 – 2qn

2
)

2
 = 1. 

 
Other commended solvers: Ellen CHAN 
On Ting (True Light Girls’ College, Form 
5), Cheng HAO (The Second High 
School Attached to Beijing Normal 
University), HUI Jack (Queen’s College, 
Form 5), D. Kipp JOHNSON (Valley 
Catholic School, Teacher, Beaverton, 
Oregon, USA), LAW Yau Pui (Carmel 
Divine Grace Foundation Secondary 
School, Form 6), Asger OLESEN 
(Toender Gymnasium (grammar school), 
Denmark), POON Ming Fung(STFA 
Leung Kau Kui College, Form 7), 
Achilleas P. PORFYRIADIS (American 
College of Thessaloniki “Anatolia”, 
Thessaloniki, Greece), Anna Ying PUN 
(STFA Leung Kau Kui College, Form 6), 
Steve ROFFE, TONG Yiu Wai (Queen 
Elizabeth School, Form 7) and YEUNG 
Wai Kit (STFA Leung Kau Kui College, 
Form 4).  
 
 

 

 

Olympiad Corner 

(continued from page 1) 
 
Problem 4. Solve the system of equations 

1
1,

x

xy z
= +

1
1,

y

yz x
= +

1
1

z

zx y
= +  

in the domain of real numbers. 

 

Problem 5. In the interiors of the sides AB, 

BC and CA of a given triangle ABC, points 

K, L and M, respectively, are given such 

that  

            | | | | | |
.

| | | | | |

AK BL C M

K B LC M A
= =  

Show that the triangles ABC and KLM 

have a common orthocenter if and only if 

the triangle ABC is equilateral. 

 

Problem 6. On the table there are k heaps 

of 1, 2, …, k stones, where k ≥3. In the 

first step, we choose any three of the heaps 

on the table, merge them into a single new 

heap, and remove 1 stone (throw it away 

from the table) from this new heap. In the 

second step, we again merge some three of 

the heaps together into a single new heap, 

and then remove 2 stones from this new 

heap. In general, in the i-th step we     

choose any three of the heaps, which 

contain more than i stones when 

combined, we merge them into a single 

new heap, then remove i stones from this 

new heap. Assume that after a number of 

steps, there is a single heap left on the 

table, containing p stones. Show that 

the number p is a perfect square if and 

only if the numbers 2k+2 and 3k+1 are 

perfect squares. Further, find the least 

number k for which p is a perfect 

square. 

 

 

 

Homothety 
                        (continued from page 2) 

 

Example 7. (2000APMO) Let ABC be 

a triangle. Let M and N be the points in 

which the median and the angle 

bisector, respectively at A meet the side 

BC. Let Q and P be the points in which 

the perpendicular at N to NA meets MA 

and BA respectively and O the point in 

which the perpendicular at P to BA 

meets AN produced.  
 

Prove that QO is perpendicular to BC.   

A

B CM N

P

O

B' C'K,Q

 

Solution (due to Bobby Poon). The 

case AB = AC is clear.  

 

Without loss of generality, we may 

assume AB > AC. Let AN intersect the 

circumcircle of ∆ABC at D. Then  

 

  ∠DBC = ∠DAC  = 1
2
∠BAC  

                 = ∠DAB =∠DCB.  

 

So DB = DC and MD is perpendicular 

to BC. 

 

Consider the homothety with center A 

that sends ∆DBC to ∆OB’C’. Then 

OB’ = OC’ and BC is parallel to B’C’. 

Let B’C’ intersect PN at K. Then  

 
  ∠OB’K = ∠DBC  = ∠DAB 

                  = 90° – ∠AOP = ∠OPK.  

 

So points P, B’, O, K are concyclic. 

Hence ∠B’KO =∠B’PO = 90° and 

B’K = C’K. Since BC || B’C’, this 

implies K is on MA. Hence, K = Q. 

Now ∠B’KO = 90° implies QO=KO

⊥B’C’. Finally, BC || B’C’ implies QO 

is perpendicular to BC. 


