The Hong Kong University of Science and Technology Department of Mathematics

Hong Kong Geometry Colloquium

Point-arrangements in the real projective spaces and the Fibonacci polynomials

By
Prof. Masaaki YOSHIDA
Kyushu University, Japan

Abstract

In this report, arrangements of $n+2$ points in general position in the real projective n-space are unique up to projective transformations. Those of $m:=n+3$ points are projectively not unique, but they are combinatorially unique. We are interested in arrangements of m points which admit an action of the cyclic group of order m. Let p_{1}, \cdots, p_{n+2} be $n+2$ points in general position. We add another point p_{m} and require that the m points $p_{1}, \cdots, p_{n+2}, p_{m}$ admit a projective transformation σ inducing the cyclic permutation: $$
\sigma: p_{1} \rightarrow p_{2} \rightarrow \cdots \rightarrow p_{n+2} \rightarrow p_{m} \rightarrow p_{1}
$$

There always exist such p_{m} and σ, and in fact there are several choices in general. We show that such choices exactly correspond to the roots of the Fibonacci polynominal $F_{n}(t)$ of degree [$n / 2$] +1 . And moreover, the resulting m points $p_{1}, \cdots, p_{n+2}, p_{m}$ are in general position if and only if the corresponding root is "primitive", i.e., a root of the core Fibonacci polynomial $f_{n}(t)$, which is an irreducible factor of $F_{n}(t)$ of degree $\varphi(m) / 2$. Here, $\varphi(m)$ denoted Euler's function counting the number of positive integers less than m and co-prime to m.

Date	$:$ Saturday, 10 February 2018
Time	$:$ 10:00a.m.-11:00a.m.
Venue	$:$ Room 4504, Academic Building
	(near Lifts 25\&26), HKUST

Admissible height pairings of algebraic cycles

By
 Prof. Shouwu ZHANG Princeton University and IAS of HKUST

Abstract

For a smooth and projective variety X over a global field of dimension n with an adelic polarization, we propose canonical local and global height pairings for two cycles Y, Z of pure dimension p, q satisfying $p+q=n-1$. We will give some explicit arichmedean local pairings by writing down explicit formula for the diagonal Green current for some Shimura varieties.

$$
\begin{aligned}
& \text { Date }: \text { Saturday, } 10 \text { February } 2018 \\
& \text { Time }: \\
& \text { Venue } \text { 11:20a.m.-12:20p.m. } \\
& \\
& \text { (neom 4504, Academic Building } \\
&\text { (near } 25 \& 26), \text { HKUST }
\end{aligned}
$$

All are welcome!

Light refreshment will be provided at Room 3493 from 11:00 am to 11:20 am

