

THE HONG KONG UNIVERSITY OF SCIENCE & TECHNOLOGY

Department of Mathematics

SEMINAR ON APPLIED MATHEMATICS

Nonreciprocal Interactions - Drops of Active Liquids and Arrested Coarsening

By

Prof. Uwe Thiele

University of Muenster, Germany

Abstract

After briefly reviewing the recent effort of physicists and mathematicians alike to break Newton'sthird law to make systems active [1], we introduce particular continuum models featuring suchnonreciprocal interactions that destroy the gradient dynamics structure of well-known models. First, a thin-fi lm model for partially wetting drops on solid substrates is made active byincorporating a nonreciprocal coupling to a polarisation fi eld in the form of self-propulsion andactive stress [2]. We show that the employed polarisation-surface coupling results in (hysteretic)transitions between resting and moving drops, the splitting of drops, and chiral motion. Second, weintroduce a nonrecipocal Cahn-Hilliard model [3,4], show that all its linear stability thresholds maybe mapped onto the ones of a Turing reaction-diffusion system [4], and indicate how thenonreciprocal interactions arrest and stop coarsening, and give rise to localised and/or oscillatorystates [4]. Finally, we argue that the nonrecipocal Cahn-Hilliard model indeed is of universalimportance as it corresponds to the last missing amplitude equation out of eight that should existif considering a classifi cation of linear instabilities of uniform constant states based on threefeatures: small-vs large-scale, stationary vs. oscillatory, and with vs. without conservation law [5]. The talk ends with a brief outlook.

References

- 1. Y. X. Chen and T. Kolokolnikov, J. R. Soc. Interface 11, 20131208 (2014); A. V. Ivlev, J. Bartnick, M. Heinen, C. R. Du, V. Nosenko, and H. Löwen, Phys. Rev. X 5, 011035 (2015); M. Fruchart, R.Hanai, P. B. Littlewood, and V. Vitelli, Nature 592, 363 (2021); M. J. Bowick, N. Fakhri, M. C.Marchetti, and S. Ramaswamy, Phys. Rev. X 12, 010501 (2022).
- 2. S. Trinschek, F. Stegemerten, K. John, and U. Thiele, Phys. Rev. E 101, 062802 (2020); F. Stegemerten, K. John, and U. Thiele, Soft Matter 18, 5823 (2022).
- 3. Z. H. You, A. Baskaran, and M. C. Marchetti, Proc. Natl. Acad. Sci. U. S. A. 117, 19767 (2020); S.Saha, J. Agudo-Canalejo, and R. Golestanian, Phys. Rev. X 10, 041009 (2020);
- 4. T. Frohoff-Hülsmann, J. Wrembel, and U. Thiele, Phys. Rev. E 103, 042602 (2021); T. Frohoff-Hülsmann and U. Thiele, IMA J. Appl. Math. 86, 924 (2021); T. Frohoff-Hülsmann, U. Thiele, and L.M. Pismen, Philos. Trans. R. Soc. A, to appear, http://arxiv.org/abs/2211.08320 (2023).
- 5. T. Frohoff-Hülsmann and U. Thiele, http://arxiv.org/abs/2301.05568 (2022).

Date : 8 May 2023 (Monday)

Time : 4:30pm - 5:30pm

Venue: Room 4475 (Lifts 25/26)

All are Welcome!