ABSTRACT

Topology optimization constitutes a powerful computational approach for devising structures exhibiting optimized performance under designated constraints. In this thesis, we introduce a novel deep generative model, based on diffusion models, to address the minimum compliance problem. The minimum compliance problem entails the identification of an optimal material distribution within a prescribed design domain, such that structural stiffness is maximized or, equivalently, compliance—a metric gauging flexibility—is minimized, subject to specific loading and boundary conditions. Deep generative models represent a category of deep learning algorithms that have emerged as a propitious alternative to conventional topology optimization methodologies. These models, which encompass Variational Autoencoders (VAEs), Generative Adversarial Networks (GANs), and their variations, have demonstrated remarkable success in engendering high-quality designs through data-driven processes. Our research presents a successful framework based on the diffusion model which outperforms GAN-based models.

Date: 4 August 2023, Friday

Time: 11:00 a.m.

Venue: Room 4475 (Lift 25/26)

Zoom ID: 957 2260 9565 (passcode: 230804)  ~ EE opted via online mode.

https://hkust.zoom.us/j/95722609565

Thesis Examination Committee:

Chairman: Prof. Rolf Walter LORTZ, PHYS/HKUST

Thesis Supervisor: Prof. Xiaoping WANG, MATH/HKUST

Thesis Supervisor: Prof. Zhen ZHANG, Department of Mathematics/Southern University of Science and Technology

Member: Prof. Jianfeng CAI, MATH/HKUST

Member: Prof. Yang Xiang, MATH/HKUST

Member: Prof. Wenjing YE, MAE/HKUST

External Examiner: Prof. Huangxin CHEN, School of Mathematics/Xiamen University

(Open to all faculty and students)

The student's thesis is now being displayed on the reception counter in the General Administration Office (Room 3461).