Computing the Quasi-Potential and Invariant Distribution for Randomly Perturbed Dynamical Systems Using Deep Learning

By

Prof. Weiqing REN
National University of Singapore

Abstract

The invariant distribution, which is characterized by the stationary Fokker-Planck equation, is an important object in the study of randomly perturbed dynamical systems. Traditional numerical methods for computing the invariant distribution based on the Fokker-Planck equation, such as finite difference or finite element methods, are limited to low-dimensional systems due to the curse of dimensionality. In this work, we propose a deep learning based method to compute the generalized potential, i.e. the negative logarithm of the invariant distribution multiplied by the noise. The idea of the method is to learn a decomposition of the force field, as specified by the Fokker-Planck equation, from the noisy trajectory data.

In the second part of the talk, we introduce a similar method to learn the quasi-potential for dynamical systems perturbed by small noise. The effectiveness of the proposed methods is demonstrated by numerical examples.

Date : 21 July 2023 (Friday)
Time : 11:00am – 12:00mn
Venue : Room 2302 (Lifts 17/18)

All are Welcome!