THE HONG KONG UNIVERSITY OF SCIENCE & TECHNOLOGY

Department of Mathematics

SEMINAR ON PDE

Frankel property and Maximum Principle at Infinity for complete minimal hypersurfaces

Prof. Jose M. Espinar
Universidad de Cadiz, Spain

Abstract

We extend Mazet's Maximum Principle at infinity for parabolic, two-sided, properly embedded minimal hypersurfaces, up to ambient dimension seven. Parabolicity is a necessary condition in dimension $n \geq 4$, even in Euclidean space, as the example of the higher-dimensional catenoid shows. Next, inspired by the Tubular Neighborhood Theorem of Meeks-Rosenberg in Euclidean three-space we focus on the existence of an embedded ϵ-tube when the ambient manifold M has non-negative Ricci curvature. These results will allow us to establish Frankel-type properties and to extend the Anderson-Rodriguez Splitting Theorem under the existence of an area-minimizing mod(2) hypersurface Σ in these manifolds M (up to dimension seven), the universal covering space of M is isometric to $\Sigma \times \mathbb{R}$ with the product metric.

Date: 26 October 2023 (Thursday)

Time: 4:30pm

Zoom Meeting: https://hkust.zoom.us/j/94135776085 (Passcode: 794539)

All are Welcome!