Okounkov's conjecture via BPS Lie algebras

by

Prof. Ben Davison
University of Edinburgh

Abstract

Given an arbitrary finite quiver \(Q \), Maulik and Okounkov defined a new Yangian-style quantum group. It is built via their construction of \(R \) matrices on the cohomology of Nakajima quiver varieties, which in turn is constructed via their construction of stable envelopes. Just as in the case of ordinary Yangians, there is a Lie algebra \(g_Q \) inside their new algebra, and the Yangian is a deformation of the current algebra of this Lie algebra.

Outside of extended ADE type, numerous basic features of \(g_Q \) have remained mysterious since the outset of the subject, for example, the dimensions of the graded pieces. A conjecture of Okounkov predicts that these dimensions are given by the coefficients of Kac's polynomials, which count isomorphism classes of absolutely indecomposable \(Q \)-representations over finite fields. I will present a recent result with Tommaso Botta: we prove that the Maulik-Okounkov Lie algebra \(g_Q \) is isomorphic to a certain BPS Lie algebra constructed in my previous work with Sven Meinhardt. This implies Okounkov's conjecture, as well as essentially determining \(g_Q \), thanks to recent joint work of myself with Hennecart and Schlegel Mejia.

Date : 11 January 2024 (Thursday)
Time : 3:30pm – 5:00pm*
Venue : Room 4503 (Lifts 25/26)

All are Welcome!