

THE HONG KONG UNIVERSITY OF SCIENCE & TECHNOLOGY

Department of Mathematics

SEMINAR ON APPLIED MATHEMATICS

No existence of a linear algorithm for Fourier phase retrieval

By

Prof. Zhiqiang XU

Academy of Mathematics and System Science, Chinese Academy of Sciences, Beijing

<u>Abstract</u>

Fourier phase retrieval, which aims to reconstruct a signal from its Fourier magnitude, is of fundamental importance in engineering and scientific fields. In this talk, we provide a theoretical understanding of algorithms for the one-dimensional Fourier phase retrieval problem. Specifically, we demonstrate that if an algorithm exists that can reconstruct an arbitrary signal $\sqrt{N} in C^N$ in $\sqrt{Poly}(N) \log(1/epsilon)$ time to reach $\frac{s}{s}$ precision from its magnitude of discrete Fourier transform and its initial value x(0), then $\frac{P}{=} Mathcal{NP}$. This partially elucidates the phenomenon that, despite the fact that almost all signals are uniquely determined by their Fourier magnitude and the absolute value of their initial value $\frac{x(0)}{s}$, no algorithm with theoretical guarantees has been proposed in the last few decades. Our proofs employ the result in computational complexity theory that the Product Partition problem is NP-complete in the strong sense.

Date : 30 May 2024 (Thursday) Time : 3:00p.m.-4:00p.m. Venue : Room 2129C (near Lift 19)

All are Welcome!