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Abstract 

Recent empirical studies have shown that diffusion models possess a unique reproducibility property, 
transiting from memorization to generalization as the number of training samples increases. This 
demonstrates that diffusion models can effectively learn image distributions and generate new samples. 
Remarkably, these models achieve this even with a small number of training samples, despite the 
challenge of large image dimensions, effectively circumventing the curse of dimensionality. In this work, 
we provide theoretical insights into this phenomenon by leveraging two key empirical observations: (i) 
the low intrinsic dimensionality of image datasets and (ii) the low-rank property of the denoising 
autoencoder in trained diffusion models. With these setups, we rigorously demonstrate that optimizing 
the training loss of diffusion models is equivalent to solving the canonical subspace clustering problem 
across the training samples. This insight has practical implications for training and controlling diffusion 
models. Specifically, it enables us to precisely characterize the minimal number of samples necessary 
for accurately learning the low-rank data support, shedding light on the phase transition from 
memorization to generalization. Additionally, we empirically establish a correspondence between the 
subspaces and the semantic representations of image data, which enables one-step, transferrable, 
efficient image editing. Moreover, our results have profound practical implications for training 
efficiency and model safety, and they also open up numerous intriguing theoretical questions for future 
research. 
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