

THE HONG KONG UNIVERSITY OF SCIENCE & TECHNOLOGY

Department of Mathematics

SEMINAR ON DATA SCIENCE AND APPLIED MATHEMATICS

Sampling Complexity of Temporal-Difference and Proximal Policy Optimization in RKHS

By

Prof. Liang DingSchool of Data Science, Fudan University

Abstract

We revisit Proximal Policy Optimization (PPO) from a function-space perspective. Our analysis decouples policy evaluation and improvement in a reproducing kernel Hilbert space (RKHS): (i) A kernelized temporal-difference (TD) critic performs efficient RKHS-gradient updates using only one-step state-action transition samples; (ii) a KL-regularized, natural-gradient policy step exponentiates the evaluated action-value, recovering a PPO/TRPO-style proximal update in continuous state-action spaces. We provide non-asymptotic, instance-adaptive guarantees whose rates depend on RKHS entropy, unifying tabular, linear, Sobolev, Gaussian, and Neural Tangent Kernel (NTK) regimes, and we derive a sampling rule for the proximal update that ensures the optimal k^(-1/2) convergence rate for stochastic optimization. Empirically, the theory-aligned schedule improves stability and sample efficiency on common control tasks (e.g., CartPole, Acrobot), while our TD-based critic attains favorable throughput versus a GAE baseline. Altogether, our results place PPO on a firmer theoretical footing beyond finite-dimensional assumptions and clarify when RKHS-proximal updates with kernel-TD critics yield global policy improvement with practical efficiency. Keywords: Kernel method, Temporal-Difference, Proximal Policy

Bio: Liang Ding is an Assistant Professor in the School of Data Science at Fudan University. Before joining Fudan, he was a Postdoctoral Research Associate jointly appointed by the Department of Industrial and Systems Engineering and the Texas A&M Institute of Data Science at Texas A&M University. He received his Ph.D. in Operations Research from the Hong Kong University of Science and Technology, supported by the Hong Kong PhD Fellowship and the

and statistical learning.

Date: 13 November 2025 (Thursday)

Overseas Scholarship. His research interests include simulation optimization, kernel methods,

Time : 2:00p.m.-3:00p.m.

Venue: Room 4621 (near Lift 31/32)

All are welcome