MATH 4424 Multivariate Statistical Analysis Course Outline --- Fall 2023

1. Instructor(s)

Name: Dr. XIA, Dong (L1) *Contact Details:* Room 3477, tel: ext-2244, email: <u>madxia@ust.hk</u> If you want to make an appointment with Dr. XIA, send him an email.

2. Teaching Assistant(s)

Name: SHEN, Yinan (T1A), email: <u>yshenay@connect.ust.hk</u> If you want to make an appointment with your TA, send him an email.

3. Meeting Time and Venue

<u>Lectures:</u>

Date/Time:L1: TuTh. 9:00AM - 10:20AMVenue:Lecture Theatre H

<u>*Tutorials:*</u> Date/Time:

T1A: Th. 7:00PM - 7:50PM;

Rm 2463 (lift 25-26)

(R programming is important. Our TA will give several tutorial sessions in the first few weeks for the basics of R programming.)

4. Course Description

Credit Points: 3 Pre-requisite: MATH 3423 and MATH 3424 Exclusion: ISOM 5530

Brief Information/synopsis:

Inferences of means and covariance matrices, canonical correlation, discriminant analysis, multivariate ANOVA, principal components analysis, factor analysis

5. Intended Learning Outcomes

Upon successful completion of this course, students should be able to:

No.	ILOs
1	Get familiar with multivariate normal distribution, random sample, the distributions of sample mean and covariance, Linear combination of normal random variables
2	Understand the testing of mean vector, Hotelling's test, Likelihood ratio test, Confidence regions and Large sample inference, Comparing mean vectors from two populations, and one-way MANOVA
3	Understand the population principal components, Sample variation summarisation
4	Understand Canonical variates, correlation, interpretation of canonical variables, Sample canonical correlation
5	Understand classification, Linear and quadratic classification rules, Evaluating classification performance

6. Assessment Scheme

a. Percentage of coursework, examination, etc.:

Assessment 1	Assessing Course ILOs
15% Assignments	1,2,3,4,5
30% Mid-term Test	1,2,3
55% Final Examination	1,2,3,4,5
Assessment 2	Assessing Course ILOs
15% Assignments	<u>1,2,3,4,5</u>
0% Mid-term Test (in case the student cannot attend the midterm)	1,2,3

85% Final Examination (in case the student 1,2,3,4,5 cannot attend the midterm)

The final grade=max { Assessment 1, Assessment 2} (You can bring a computer to final exam, but your screen must ONLY shows the Rstudio interface.)

7. Student Learning Resources

Lecture notes and slides (on canvas)

Textbook: Johnson and Wichern, *Applied Multivariate Statistical Analysis*, Sixth Edition (The book is not required.)

8. Teaching and Learning Activities

Scheduled activities: 4 hrs (lecture + tutorial)

9. Tentative Course Schedule

Keyword Syllabus:

Chaps 1, 2 and 3 Introduction, Basic Prerequisite and Sample Geometry (~6 hours)
(i) Why multivariate analysis, data display and organisation and distance; (ii) Prerequisite on matrix algebra; (iii) Positive definite matrix and covariance matrix (iv) Geometry of sample;
(v) Random sample; (vi) Sample mean, covariance and correlation; (vii) Linear combination of normal variables;

• Chap 4 Multivariate Normal Distribution (~5 hours)

(i) Multivariate normal density and property; (ii) Maximum Likelihood Estimator; (iii) Sampling distribution of sample mean and covariance; (iv) Assess the assumption of normal distribution; (v) Detect outliers and data cleaning; (vi) Data transformation to near normality; (vii) Examples with R codes

• Chap 5 Inference about a Mean Vector (~4 hours)

(i) Test the mean vector; (ii) Hotelling's test; (iii) Likelihood ratio test; (iv) Confidence region and simultaneous confidence interval; (v) Large sample inference; (vi) Examples with R codes

• Chap 6 Comparisons of Several Multivariate Means (~4 hours)

(i) Paired comparison; (ii) Compare mean vectors from two populations; (iii) Compare several multivariate population means (MNOVA); (iv) Examples with R codes

• Chap 7 Multiple Linear Regression (~2 hours)

(i) Least squares estimation; (ii) Inferences about regression model; (iii) Inferences from estimated regression function;

• Chap 8 Principal Component Analysis (~4 hours)

(i) Population principal components; (ii) Summarizing sample variation by principal components; (iii) Cautions and scalings; (iv) Large sample inference; (v) Number of principal components; (vi) Examples with R codes

• Chap 9 Canonical Correlation Analysis (~3 hours)

(i) Canonical variates and correlation; (ii) Interpret the population canonical variables; (iii) Sample canonical variates and sample canonical correlation; (iv) Large Sample Inference; (v) Examples with R codes

• Chap 10 Discrimination and Classification (~5 hours)

(i) Separation and classification for two populations; (ii) Classification with two multivariate normal population; (iii) Evaluate classification functions; (iv) Classification with several populations; (v) Examples with R codes