MATH 2011 Introduction to Multivariable Calculus

<u>Course Outline – Fall Term 2024/2025</u>

1. Instructor: Math2011 (L1) by Professor Tiezheng QIAN

Email: maqian@ust.hk Office: Room 3437

Office hours: Appointments via email

2. Lecture/Tutorial Hours and Venues:

QIAN, Tiezheng/maqian	L1	Wed/Fri	13:30 - 14:50	CYTG010
LI, Yakun/ylinv	T1A	Wed	09:30 - 10:20	LSK1034
LI, Yakun/ylinv	T1B	Wed	12:30 - 13:20	LSK1007
ZHANG, Wenlin/wzhangdh	T1C	Thu	18:00 - 18:50	LSK1034
ZHANG, Wenlin/wzhangdh	T1D	Mon	18:00 - 18:50	CYTG009A

3. COURSE DESCRIPTION

Credits: 3

Parametric and Polar Curves, Vectors and Vector-Valued Functions, Functions of Several Variables, Multiple Integration, Vector Calculus.

Exclusion: MATH 2010, MATH 2021, MATH 2023

Pre-requisite: A passing grade in AL Pure Mathematics / AL Applied Mathematics; OR MATH 1014; OR MATH 1018; OR

MATH 1020; OR MATH 1024 (for appropriate knowledge in one-variable calculus)

4. INTENDED LEARNING OUTCOMES (ILOs)

Upon successful completion of this course, students should be able to

1	Understand the basic <i>concepts</i> and know the basic <i>techniques</i> of differential and integral calculus of functions of several variables;
2	Apply the theory to calculate the gradients, directional derivatives, arc length of curves, area of surfaces, and volume of solids;
3	Solve problems involving maxima and minima, line integral and surface integral, and vector calculus;
4	Develop mathematical maturity to undertake higher level studies in mathematics and related fields.

5. ASSESSMENT SCHEME (to be updated)

10% Homework: WeBWorK. Course ILOs: 1, 2, 3, 4

30% Midterm Exam: Date to be announced. Course ILOs: 1, 2, 3, 4

60% Final Exam. Course ILOs: 1, 2, 3, 4

Final exam is comprehensive, i.e., <u>all the materials</u> taught in the whole semester will be tested, including those already tested in the midterm exam. But **focus** will be on those topics not covered in the midterm.

Closed-book exams: No notes and no calculators. More information will be given prior to the exams.

6. Student Learning Resources

Textbook: Calculus – James Stewart. BROOKS/COLE

Reference: Calculus for Scientists and Engineers: Early Transcendentals – Briggs, Cochran and Gillett. <u>Pearson New International Edition</u>.

7. Teaching and learning Activities

Scheduled activities: 4 hours (Lecture for 3 hours & Tutorial for 1 hour) per week

8. TEACHING SCHEDULE for 24 classes in total

Topic 1. Parametric and Polar Curves: Class 1 - 3 (3 classes)

- 1. Parametric equations
- 2. Polar coordinates
- 3. Calculus in polar coordinates

Topic 2. Vectors and Vector-Valued Functions: Class 4 - 9 (6 classes)

- 1. Vectors in the plane
- 2. Vectors in three dimensions
- 3. Dot products
- 4. Cross products
- 5. Lines and curves in space
- 6. Calculus of vector-valued functions
- 7. Motion in space
- 8. Length of curves
- 9. Curvature and normal vectors

Topic 3. Functions of Several Variables: *Class 10 – 16 (7 classes)*

- 1. Planes and surfaces
- 2. Graphs and level curves
- 3. Limits and continuity
- 4. Partial derivatives

- 5. The chain rule
- 6. Directional derivatives and the gradient
- 7. Tangent planes and linear approximation
- 8. Maximum/minimum problems

Topic 4. Multiple Integration: Class 17 – 20 (4 classes)

- 1. Double integrals over rectangular regions
- 2. Double integrals over general regions
- 3. Double integrals in polar coordinates
- 4. Triple integrals

Topic 5. Vector Calculus: *Class* 21 – 24 (4 *classes*)

- 1. Vector fields
- 2. Line integrals
- 3. Conservative vector fields
- 4. Green's theorem