Math1014-L1 Calculus II Course Outline - Fall 2025-2026

1 Instructor(s)

Name: Dr. LIU, Stephen Shang Yi

Office: Room 3446 Email: masyliu@ust.hk (also stephen.liu@ust.hk)
Office Hours: TueWed 15:00-17:00 at Room 3446, please email beforehand.

2 Teaching Assistant(s)

WONG, Chun Hei Burton (maburton@ust.hk), LIANG, Shixin Phyllis (masxliang@ust.hk)

3 Meeting Times and Venue:

Instructor	Lecture/Tutorial Section	Date and Time	Room
LIU Stephen Shang Yi	L1	MonWed 09:00-10:20	LTF
WONG Chun Hei Burton	T1A	Wed 10:30-11:20	1527
LIANG Shixin Phyllis	T1B	Tue 17:00-17:50	1409
LIANG Shixin Phyllis	T1C	Mon 13:30-14:20	4502

4 Course Description

Credit Points: 3

Pre-requisite: Math1012, or Math1013, or Math1023, or grade A- or above in Math1003 Exclusion: AL Pure Mathematics, AL Applied Mathematics, Math1020, Math1024.

Brief Information/synopsis:

This course is a sequel to Math1012 or Math1013. Topics include applications of definite integrals, integration techniques, improper integrals, infinite sequences and infinite series, power series and Taylor series, and vectors.

5 Intended Learning Outcomes

On successful completion of this course, students should be able to:

No.	ILOs
1	apply basic integration skills;
2	apply the method of integration on formulating and solving problems;
3	solve convergence problems of infinite sequences and series;
4	apply various vector operations in dimension 2 and 3.

6 Assessment Scheme

- a. Examination duration: Midterm Exam: 1.5 hrs, Final Exam: 3 hrs
- b. Percentage of coursework, examination, etc.:

Assessment	Assessing Course ILOs
10% by Online WeBWork Homework	$\overline{1, 2, 3, 4}$
(https://webwork.math.ust.hk)	
35% by Midterm Exam (Time and Date: To be announced)	1, 2,
55% by final exam	1, 2, 3, 4

- c. The grading is assigned based on performance in assessment tasks. The grade essentially reflect the following: A (Excellent Performance: High level of conceptual understanding and computation skills), B (Good Performance: good conceptual understanding and computation skills), C (Satisfactory Performance: minimum understanding of the concepts with satisfactory computation skills), D (Marginal Pass: fragmented basic computation skills), F (Fail)
- d. AI Policy: No restriction in using AI for self-studying, but the students should be aware that AI tools are not permitted in the written exams of the course.
- e. Academic Integrity: Students are expected to adhere to the HKUST academic integrity policy.

7 Student Learning Resources

Text/Reference:

- J. Stewart, "Calculus-Early Transcendentals". Cengage.
- J. Hu, W.-P. Li, Y. Wu, "Calculus for scientists and engineers with mathlab".

8 Teaching and Learning Activities

Scheduled activities: 4hrs (lecture + tutorial)

9 Course Schedule*

Chapter sections corresponding to J. Stewart, "Calculus-Early Transcendentals". Cengage are shown in parentheses below.

Lecture	Date	Topic	
1	Sept. 1	Review of Definite Integrals, The Fundamental Theorem of Cal-	
		culus, Indefinite Integrals, The Substitution Rule (5.2-5.5)	
2	Sept. 3	Area Between Curves (6.1)	
3	Sept. 8	Volumes (6.2)	
4	Sept. 10	Volumes by Cylindrical Shells (6.3)	
5	Sept. 15	Work (6.4)	
6	Sept. 17	Average Value of a Function (6.5)	
7	Sept. 22	Integration by Parts (7.1)	
8	Sept. 24	Trigonometric Integration (7.2)	
9	Sept. 29	Trigonometric Substitution (7.3)	
	Oct. 1	Public Holiday - National Day	
10	Oct. 6	Integration of Rational Functions by Partial Fractions (7.4)	
11	Oct. 8	Approximate Integration (7.7)	
12	Oct. 13	Improper Integrals (7.8)	
13	Oct. 15	Arc Length, Area of a Surface of Revolution (8.1-8.2)	
14	Oct. 20	Polar Coordinates and Calculus (10.3-10.4)	
15	Oct. 22	Infinite Sequences (11.1)	
16	Oct. 27	Infinite Series (11.2)	
	Oct. 29	Public Holiday - Chung Yeung Festival	
17	Nov. 3	Integral Test, Comparison Tests (11.3-11.4)	
18	Nov. 5	Alternating Series (11.5)	
19	Nov. 10	Absolute Convergence and the Ratio and Root Tests (11.6)	
20	Nov. 12	Power Series, Representations of Functions as Power Series	
		(11.8-11.9)	
21	Nov. 17	Taylor and Maclaurin Series (11.10)	
22	Nov. 19	Applications of Taylor Polynomials (11.11)	
23	Nov. 24	Three Dimensional Coordinate Systems (12.1)	
24	Nov. 26	Vectors, Dot Product, Cross Product (12.2-12.4)	

Midterm time and Date: To be announced.

^{*-} Subject to revision.

Math1014-L2 Calculus II Course Outline - Fall 2025-2026

1 Instructor(s)

Name: Dr. LIU, Stephen Shang Yi

Office: Room 3446 Email: masyliu@ust.hk (also stephen.liu@ust.hk)
Office Hours: TueWed 15:00-17:00 at Room 3446, please email beforehand.

2 Teaching Assistant(s)

LIANG, Shixin Phyllis (masxliang@ust.hk), WONG, Chun Hei Burton (maburton@ust.hk)

3 Meeting Times and Venue:

Instructor	Lecture/Tutorial Section	Date and Time	Room
LIU Stephen Shang Yi	L2	Mon 15:00-16:20, Fri 10:30-11:50	LTG
WONG Chun Hei Burton	T2A	Thu 13:30-14:20	4579
LIANG Shixin Phyllis	T2B	Wed 09:30-10:20	4502
LIANG Shixin Phyllis	T2C	Mon 10:30-11:20	1527

4 Course Description

Credit Points: 3

Pre-requisite: Math1012, or Math1013, or Math1023, or grade A- or above in Math1003 Exclusion: AL Pure Mathematics, AL Applied Mathematics, Math1020, Math1024.

Brief Information/synopsis:

This course is a sequel to Math1012 or Math1013. Topics include applications of definite integrals, integration techniques, improper integrals, infinite sequences and infinite series, power series and Taylor series, and vectors.

5 Intended Learning Outcomes

On successful completion of this course, students should be able to:

No.	ILOs
1	apply basic integration skills;
2	apply the method of integration on formulating and solving problems;
3	solve convergence problems of infinite sequences and series;
4	apply various vector operations in dimension 2 and 3.

6 Assessment Scheme

- a. Examination duration: Midterm Exam: 1.5 hrs, Final Exam: 3 hrs
- b. Percentage of coursework, examination, etc.:

Assessment	Assessing Course ILOs
10% by Online WeBWork Homework	$\overline{1, 2, 3, 4}$
(https://webwork.math.ust.hk)	
35% by Midterm Exam (Time and Date: To be announced)	1, 2,
55% by Final Exam	1, 2, 3, 4

- c. The grading is assigned based on performance in assessment tasks. The grade essentially reflect the following: A (Excellent Performance: High level of conceptual understanding and computation skills), B (Good Performance: good conceptual understanding and computation skills), C (Satisfactory Performance: minimum understanding of the concepts with satisfactory computation skills), D (Marginal Pass: fragmented basic computation skills), F (Fail)
- d. AI Policy: No restriction in using AI for self-studying, but the students should be aware that AI tools are not permitted in the written exams of the course.
- e. Academic Integrity: Students are expected to adhere to the HKUST academic integrity policy.

7 Student Learning Resources

Text/Reference:

- J. Stewart, "Calculus-Early Transcendentals". Cengage.
- J. Hu, W.-P. Li, Y. Wu, "Calculus for scientists and engineers with mathlab".

8 Teaching and Learning Activities

Scheduled activities: 4hrs (lecture + tutorial)

9 Course Schedule*

Chapter sections corresponding to J. Stewart, "Calculus-Early Transcendentals". Cengage are shown in parentheses below.

Lecture	Date	Topic	
1	Sept. 1	Review of Definite Integrals, The Fundamental Theorem of Cal-	
		culus, Indefinite Integrals, The Substitution Rule (5.2-5.5)	
2	Sept. 5	Area Between Curves (6.1)	
3	Sept. 8	Volumes (6.2)	
4	Sept. 12	Volumes by Cylindrical Shells (6.3)	
5	Sept. 15	Work (6.4)	
6	Sept. 19	Average Value of a Function (6.5)	
7	Sept. 22	Integration by Parts (7.1)	
8	Sept. 26	Trigonometric Integration (7.2)	
9	Sept. 29	Trigonometric Substitution (7.3)	
10	Oct. 3	Integration of Rational Functions by Partial Fractions (7.4)	
11	Oct. 6	Approximate Integration (7.7)	
12	Oct. 10	Improper Integrals (7.8)	
13	Oct. 13	Arc Length, Area of a Surface of Revolution (8.1-8.2)	
14	Oct. 17	Polar Coordinates and Calculus (10.3-10.4)	
15	Oct. 20	Infinite Sequences (11.1)	
16	Oct. 24	Infinite Series (11.2)	
17	Oct. 27	Integral Test, Comparison Tests (11.3-11.4)	
18	Oct. 31	Alternating Series (11.5)	
19	Nov. 3	Absolute Convergence and the Ratio and Root Tests (11.6)	
20	Nov. 7	Power Series, Representations of Functions as Power Series	
		(11.8-11.9)	
21	Nov. 10	Taylor and Maclaurin Series (11.10)	
22	Nov. 14	Applications of Taylor Polynomials (11.11)	
23	Nov. 17	Three Dimensional Coordinate Systems (12.1)	
24	Nov. 21	Three Dimensional Coordinate Systems (12.1)	
25	Nov. 24	Vectors, Dot Product, Cross Product (12.2-12.4)	
26	Nov. 28	Vectors, Dot Product, Cross Product (12.2-12.4)	

Midterm Time and Date: To be announced.

^{*-} Subject to revision.