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Abstract
We construct efficient and accurate numerical algorithms for pricing discretely monitored
barrier and Bermudan style options under time-changed Lévy processes by applying the
fast Hilbert transform method to the log-asset return dimension and quadrature rule to the
dimension of log-activity rate of stochastic time change. Some popular stochastic volatility
models, like the Heston model, can be nested in the class of time-changed Lévy processes.
The computational advantages of the fast Hilbert transform approach over the usual fast
Fourier transform method, like exponential decay of errors in terms of the step size in the
transform and avoidance of recovering option prices at the monitoring time instants, can be
extended to pricing barrier and Bermudan style options under time-changed Lévy processes.
We manage to compute the fair value of a dividend-ruin model with both embedded reflecting
(dividend) barrier and absorbing (ruined) barrier. We also consider pricing of Bermudan
options in conjunction with the determination of the associated critical asset prices. Our
numerical tests demonstrate high level of accuracy, efficiency and reliability of the fast Hilbert
transform approach when compared to other numerical schemes in the literature.

Keywords: fast Hilbert transform, time-changed Lévy processes, barrier options, dividend-
ruin model, Bermudan options

1 Introduction

A discrete path dependent option is a financial derivative whose payoff is dependent on the
path realization of the underlying asset price process monitored at discrete time instants
throughout the life of the derivative. In the past decades, effective analytical tools have been
developed to price various types of continuously monitored path dependent options under
different underlying asset price processes. However, most path dependent options traded
in the financial markets involve discrete monitoring of the underlying asset price processes.
It is well known that the prices of discrete path dependent options are highly sensitive to
monitoring frequency (say, daily monitored barrier options may be 50% or 100% higher
than those of the weekly monitored counterparts even under non-extreme scenario). Though
analytical approximation formulas are available for barrier options and lookback options for
a few common underlying asset price processes, like Geometric Brownian motions and jump-
diffusion processes (Broadie et al., 1997; Broadie et al., 1999; Dia and Lamberton, 2011),
accuracy of the analytic approximation formulas may deteriorate significantly, like what is
shown in a barrier option when the asset price is close to the knock-out barrier. A review of
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various analytical approximation methods and numerical schemes for pricing discrete barrier
and lookback options can be found in Kou (2008).

There have been continual research efforts in the past two decades to explore effective
computational algorithms for pricing discrete barrier options, lookback options and Bermu-
dan options. Under the assumption of Geometric Brownian motion (GBM) for the underlying
asset price process, one may derive closed form analytical price formulas for discrete barrier
and lookback options that are expressed in terms of multivariate normal distribution func-
tions, where the dimension equals the number of monitoring instants n (Heynen and Kat,
1995). The numerical evaluation of these high-dimensional multivariate normal distribution
functions is a daunting task. By observing that the inverse of the Brownian correlation
matrix has a simple tridiagonal structure, Tse et al. (2001) develop an effective numerical
algorithm that is quadratic order in the number of spatial points p in each integral evalu-
ation. That is, the order of complexity is O(np2) instead of O(npn) in direct valuation of
the n-dimensional multivariate normal distribution functions. Alternatively, the formulation
of discrete barrier and lookback options can be expressed as a convolution of density func-
tions over successive monitoring instants. Based on the duality property of random walks,
AitSahlia and Lai (1998) develop the recursive integration procedure for pricing discrete
lookback options. Using the convolution integral approach together with the elegant use
of the fast Gauss transform (involving the use of the Hermite functions in the expansion
of the exponential kernel), Broadie and Yamamoto (2005) develop efficient numerical algo-
rithms that have computational complexity of O(np) or linear order in the number of spatial
points in each integral evaluation. Their algorithms are applicable for pricing discrete barrier
and lookback options under GBM and Merton’s lognormal jump-diffusion model. For other
types of underlying price processes, like the CEV and variance gamma processes, Fusai and
Recchioni (2007) develop the quadrature methods for pricing discrete barrier options that
exhibit computational complexity of O(np2). Petrella and Kou (2004) use the renowned
Spitzer formula to derive the Laplace transforms of both discrete barrier and lookback op-
tions via a recursive algorithm that involves analytical formulas of vanilla European options.
The Laplace transforms can be inverted numerically to obtain the desired option values.
Fusai et al. (2006) show that valuation problems of discrete barrier options under GBM can
be reduced to the numerical solution of the Wiener-Hopf type integral equation of the sec-
ond kind. Atkinson and Fusai (2007) show that the solution procedure via the Wiener-Hopf
integral equation for pricing discrete lookback options can be related to the method that
uses the Spitzer identity.

The other class of numerical methods are the finite difference schemes and lattice tree type
algorithms. Zvan et al. (2000) present various types of implicit finite difference schemes for
pricing discrete barrier options. Andreasen (1998) proposes a dimension reduction technique
via numeraire change for pricing discrete lookback options under GBM. The numerical pro-
cedure involves finite difference solution of a sequence of one-dimensional partial differential
equations. Duan et al. (2003) propose a Markov chain method for pricing discrete barrier
options under constant and time-varying volatilities, where a time homogeneous Markov
chain is used to approximate the underlying asset price process.

When we consider pricing discrete path dependent options under Lévy processes, it is
natural to perform valuation of the option values in the Fourier domain. This is because
the characteristic function (Fourier transform of the density function) of the Lévy process
generally admits analytical closed form representation while that of the density function
itself may not be readily available. A review of the fast Fourier transform (FFT) algorithms
for pricing options can be found in Kwok et al. (2012). Jackson et al. (2008) propose the
Fourier space time-stepping methods for pricing discrete barrier and American options. In
their time-stepping procedure, after the Fourier time-stepping integration across successive
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monitoring instants, one has to perform Fourier inversion back to the real domain at each
monitoring instant to check for the knock-out condition or optimal early exercise decision. To
circumvent this source of computational inconvenience, Feng and Linetsky (2008) propose
the fast Hilbert transform method that computes a sequence of Hilbert transforms at all
discrete monitoring instants and performs one final Fourier inversion to obtain the option
price. The key ingredient in the fast Hilbert transform method is that multiplying a function
by the indicator function associated with the barrier feature in the real domain corresponds
to taking Hilbert transform in the Fourier domain. The fast Hilbert transform method is
extended to computing exponential moments of the discrete maximum of a Lévy process
and lookback options (Feng and Linetsky, 2009), as well as pricing Bermudan options under
Lévy processes (Feng and Lin, 2013). The Fourier transform methods are also applied to
pricing barrier and Bermudan options under the Heston model of stochastic volatility (Fang
and Oosterlee, 2011; Zhylyevskyy, 2010).

In this paper, we apply the fast Hilbert transform method for pricing discrete barrier
options and Bermudan options under time-changed Lévy processes. We extend the earlier
fast Hilbert transform algorithms (Feng and Linetsky, 2008; Feng and Lin, 2013) by applying
an appropriate interpolation based quadrature rule for numerical integration in the dimension
of log-activity rate of stochastic time change. We manage to extend the method to finding
the fair value of a finite dividend-ruin model with the upper reflecting (dividend) barrier and
lower absorbing (ruined) barrier. It is well known that the time-changed Lévy models nest the
popular Heston stochastic volatility model. For pricing Bermudan options under the Heston
model, our algorithm is shown to be highly accurate and achieves better computational
efficiency compared to the Fourier cosine method (Fang and Oosterlee, 2011).

This paper is organized as follows. In the next section, we review some mathematical
preliminaries on time-changed Lévy processes and Hilbert transform. We generalize the
time-changed Lévy processes to include leverage effect and show how to relate the Heston
stochastic volatility model to the time-changed Lévy process with leverage. In Section 3,
we consider pricing of the discretely monitored finite time dividend-ruin models under time-
changed Lévy processes. We illustrate how the fast Hilbert transform algorithm can be
used to deal with the reflecting (dividend) barrier condition and consider the extension of
Feng-Linetsky’s algorithm to include the adoption of the Gauss-Legendre quadrature rule for
numerical integration in the log-activity rate dimension. In Section 4, we consider pricing
of the Bermudan options under time-changed Lévy processes. Specifically, we construct the
numerical procedure for the determination of the critical asset prices with regard to early
exercise of the Bermudan option. We also consider various numerical procedures that are
adopted to achieve optimal computational efficiency in the fast Hilbert transform algorithm,
like including an effective implementation of the matrix-vector multiplication in Toeplitz
matrices. In Section 5, we present the numerical tests that were performed to assess accuracy
and computational efficiency of the fast Hilbert transform algorithms for pricing various
discrete path dependent products under different time-changed Lévy processes. Conclusive
remarks are presented in the last section.

2 Preliminaries on time-changed Lévy processes and

Hilbert transform

The literature on Lévy processes has been quite voluminous. A good review of various types
of Lévy security return models can be found in Wu (2008). Pricing models of financial
derivatives based on Lévy processes have become highly popular in recent years since Lévy
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processes can generate different independent and identically (i.i.d) return innovation distri-
butions. One can specify a Lévy process with the increments of the process matching any
given distribution. However, Lévy processes cannot capture the following salient features of
common stock price processes: stochastic volatility, stochastic risk reversal (skewness) and
stochastic correlation.

Three different approaches have been proposed in the literature to model stochastic
volatility. An intuitive approach is via a regime-switching model. For example, Kim et al.
(2012) propose a stochastic volatility model with a Lévy driving process where the stochastic
volatility is defined by a continuous Markov chain. Also, we can incorporate a time-series
model to account for volatility. The typical time-series model is the GARCHmodel that takes
into account several stylized facts, such as volatility clustering. Unfortunately, inefficiency in
numerical implementation is the main drawback of the GARCH model. The last approach
is to capture stochastic volatility via time changes in Lévy processes. Time-changed Lévy
processes provide a flexible framework, since one can use the Lévy process to generate jumps,
capture the stochastic volatility by the random time change, and introduce the leverage effect.
Another main advantage in the adoption of time-changed Lévy processes in security return
models is their nice analytical tractability and high efficiency in implementation.

2.1 Time-changed Lévy processes

Let Xt be a Lévy process with filtration Ft, whose characteristic function is given by the
Lévy-Khintchine theorem. In the context of a time-changed Lévy process, Xt is referred as
the base process. We let Tt be a non-negative, non-decreasing right-continuous process with
left limits such that for each fixed t the random variable Tt is a stopping time with respect
to Ft. The family of the stopping times Tt define the corresponding random time change
and the resulting process

Mt = XTt (2.1)

is called a time-changed Lévy process. There are different methods for choosing a time
change that is suitable for various types of financial security return models. The two most
popular approaches are the subordinators and absolutely continuous time changes.

Subordinators are non-decreasing Lévy processes. They are pure jump processes of possi-
bly infinite activity plus a deterministic linear drift. Note that many popular Lévy processes
can be generated as a Brownian motion time-changed by an independent subordinator. For
example, the Normal Tempered Stable process can be regarded as a Brownian motion time-
changed by a tempered stable subordinatorthe while the variance gamma process can be
represented as a Brownian motion subject to a gamma subordinator.

Another important type of time changes are given by the continuous time change of the
form Tt =

∫ t
0
vs ds, where vt is the instantaneous (business) activity rate. Intuitively, one can

regard t as the calendar time and Tt as the business time at t. A more active business day as
captured by a higher activity rate would imply a higher volatility. While the instantaneous
activity rate process vt is allowed to have jumps, Tt remains to be continuous with time
according to the above definition. Note that the jumps in vt are required to be nonnegative
in order to guarantee the nondecreasing property of Tt. The main advantage of the choice
of continuous time change is that it leads to security return models that are analytically
tractable.

Martingale condition
By the Lévy-Khintchine theorem and under an equivalent martingale measure Q, a general
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Lévy process Xt has its characteristic function represented in the following analytic form

ϕt(ξ) = EQ[e
iξXt ] = e−tψX(ξ) = exp

(
−t
[ σ2

2
ξ2−iµξ+

∫
R

(1−eiξy+iξy1|y|≤1) Π(dy)
])
, (2.2)

where the triplet (µ, σ2,Π) characterizes the drift, the variance of the diffusion component,
and the pure jump component of a Lévy process. Here, ψX(ξ) is known as the Lévy charac-
teristic exponent. We define

LX = {θ ∈ R : E[e−θXt ] <∞, t > 0},

which can be shown to be an interval containing the origin with endpoints λ− < 0 and
λ+ > 0 (Sato, 1999; Küchler and Sorensen, 1997). To guarantee that eXt is a martingale
under Q, the corresponding martingale condition is given by

EQ[e
Xt ] = ϕt(−i) = eX0 ,

so that ϕt(−i) = 1. Later, we drop the subscript “Q” in the expectation operator EQ for
brevity. The martingale condition leads to the following condition on the drift parameter µ
of the Lévy process

µ = −σ
2

2
+

∫
R
(1− ey + y1|y|≤1) Π(dy). (2.3)

In order that the martingale condition holds, it is necessary to have θ = −1 ∈ LX . As a
result, we have to assume [−1, 0] ⊂ (λ−, λ+).

Since a continuous time change does not affect the martingale property, it follows that
eXTt remains to be a martingale. In this paper, we model the dynamics of the underlying
log-asset return by this type of time-changed Lévy process. More precisely, the log-asset
return process is modeled as a time-changed Lévy process of the form

St = S0e
rteMt = S0e

rteXTt . (2.4)

For nice analytical tractability, we assume Xt and Tt to be independent. Under the inde-
pendence assumption, together with the given characteristic function of Tt, we can obtain
the closed form for the characteristic function of the time-changed Lévy process without
invoking change of measures. Also, we can avoid the nuisance of estimating the correlation
coefficient between Xt and Tt, a procedure that may not be straightforward in most practical
cases.

Cox-Ingersoll-Ross process as the activity rate process
While there are many different choices for a stochastic process that serves as the activity
rate process in stochastic time change, we confine our choice to the Cox-Ingersoll-Ross (CIR)
process in this paper. A process vt is said to be a CIR process or a square-root process if its
dynamics is governed by the following stochastic differential equation

dvt = λ(v̄ − vt)dt+ η
√
vt dW

v
t . (2.5)

Note that the singularity of the diffusion coefficient at the origin disallows subsequent non-
negative value for vt once vt starts with an initial positive value. Actually, the occurrence of
square root of vt in the diffusion coefficient would preclude negative value for vt. The CIR
process has the mean reversion property exhibited in the drift term and the parameter v̄
has the usual interpretation as the mean reversion level. The corresponding continuous CIR
clock with vt as the activity rate process is given by the following time change integral

Tt =

∫ t

0

vs ds. (2.6)
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Feller condition
When the Feller condition, 2λv̄ ≥ η2, is satisfied, the origin becomes inaccessible to the CIR
process vt. This would guarantee that vt stays strictly positive. Unfortunately, the CIR
model parameters obtained from the calibration of market data may fail to satisfy the Feller
condition. When the Feller condition fails, the cumulative distribution of the variance mod-
eled by the CIR process may show an almost singular behavior near the origin (Andersen,
2008). The origin is accessible by vt and strongly reflecting. More specifically, the density
of variance vt grows extremely fast in the left tail. The phenomenon in the left tail may
give rise to significant errors in the integration based option pricing methods, where a finite
truncation of the integration range for the variance is adopted. To resolve this difficulty,
Fang and Oosterlee (2011) propose to transform the density function from the variance do-
main to the log-variance domain by defining γt = ln vt. We follow a similar approach to
deal with this potential problem of singular behavior since the Feller condition may fail. In
our subsequent exposition, the variable is taken to be the log-activity rate as defined by
γt = ln vt. Since negative value for vt is precluded in the CIR process, the log-activity rate
γt is well defined. In Appendix A, we provide the theoretical justification to explain why
computational convenience can be achieved when we adopt the transformation from vt to
γt. Also, the characteristic function and other related properties of the CIR process are
presented.

Leverage in time-changed Lévy processes
We consider the class of time-changed Lévy processes with leverage by adding the leverage
term cvt, where

Lt = XTt + cvt. (2.7)

Here, Xt and Tt are assumed to be independent and a scalar multiple c of the activity rate
vt is added to the time-changed Lévy process. Fortunately, nice analytical tractability is
retained since the conditional moment generating function of Lt − Ls admits the following
structure

E[ew(Lt−Ls)|Fs, γt] = ewc(vt−vs)E[ew(XTt−XTs )|Fs, γt]

= ewc(vt−vs)E
[
E[ew(XTt−XTs )|Tt − Ts,Fs, γt]|Fs, γt

]
= ewc(e

γt−eγs )E
[
e−ψX(−iw)(Tt−Ts)|Fs, γt

]
= ewc(e

γt−eγs )Φ
(
iψX(−iw); γt, γs

)
,

(2.8)

where Φ(ξ; γt, γs) = E[eiξ
∫ t
s vu du|γt, γs] is the conditional characteristic function of the time-

integrated activity rate process
∫ t
s
vu du. As an example, the corresponding Φ(ξ; γt, γs) of

the CIR activity rate process is given by Eq. (A.3) in Appendix A.

Heston stochastic volatility model
The correlated stochastic processes St and vt with correlation coefficient ρ under the Heston
stochastic volatility model are governed by

dSt
St

= rdt+
√
vt dWt,

dvt = λ(v̄ − vt)dt+ η
√
vt dW

v
t .

(2.9)

where E[dWtdW
v
t ] = ρ dt. The log-asset return Yt can be expressed as a time-changed Lévy

process with leverage as follows

Yt = ln
St
S0

= rt+ W̃Tt −
1

2
Tt,
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where dW̃Tt and
√
vt dWt are equal in distribution. Fortunately, the log-asset return condi-

tional on vt can be expressed in terms of XTt as follows

Yt|vt = (r − ρλv̄

η
)t+XTt +

ρ

η
(vt − v0),

where Xt ∼ N
(
(ρλ
η
− 1

2
)t, (1− ρ2)t

)
. The corresponding characteristic exponent is given by

ψX(ξ) = (
1

2
− ρλ

η
)iξ +

1

2
(1− ρ2)ξ2.

The conditional moment generating function of the difference of the log-asset return is defined
by

Ψ(w; γt, γs) = E[ew(Yt−Ys)|Fs, γt].

Once Yt|vt and ψX(ξ) are known for the Heston model (nested within the class of time-
changed Lévy processes with leverage), the analytic representation of Ψ(w; γt, γs) is given by
[see Eq. (2.8)]

Ψ(w; γt, γs) = ew{r(t−s)+
ρ
η
[eγt−eγs−λv̄(t−s)]}Φ

(
− iw(

ρλ

η
− 1

2
)− 1

2
iw2(1− ρ2); γt, γs

)
. (2.10)

We have suppressed the dependency of Ψ(w; γt, γs) on t and s for notational convenience.

2.2 Hilbert transform

Let Ω be an arbitrary measure space with positive measure µ. For 0 < p < ∞, we let f be
a complex measurable function on Ω and define the norm by ||f ||p = {

∫
Ω
|f |p dµ}1/p. The

vector space Lp(µ) consists of all f for which ||f ||p < ∞. If µ is a Lebesgue measure on R,
we write Lp(R) instead of Lp(µ). For any f ∈ Lp(R), 1 ≤ p <∞, the Hilbert transform of f
is well defined by the Cauchy principal value integral (King, 2009)

Hf(x) = 1

π
PV

∫
R

f(y)

x− y
dy. (2.11)

For 1 < p <∞ and g ∈ Lp(R), the following parity relation holds for the primitive function
f(x) and its Hilbert transform g(x), where

g(x) =
1

π
PV

∫
R

f(y)

x− y
dy, f(x) = − 1

π
PV

∫
R

g(y)

x− y
dy.

Recall that for any f ∈ Lp(R), 1 ≤ p < ∞, its Fourier transform f̂ = Ff ∈ Lq(R) with
1
p
+ 1

q
= 1.

The Hilbert transform is closely related to the Fourier transform. For 1 < p < ∞, the
following relationship holds for any f ∈ Lp(R)

F(sgn · f)(ξ) = iHf̂(ξ), (2.12)

where sgn(x) is the sign function, and Hf̂ ∈ Lq(R) with 1
p
+ 1

q
= 1. For the special case

p = 1, we require f̂ ∈ L1(R) so that the above relationship holds. Recall that the indicator
function 1(0,∞) is related to the sign function by

1(0,∞) =
1

2
[1 + sgn(x)].
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As a result, we obtain the following formula that relates the Fourier transform of a func-
tion multiplied by the indicator function to the Hilbert transform of the Fourier transform
function

F(1(0,∞) · f)(ξ) =
1

2
f̂(ξ) +

i

2
Hf̂(ξ). (2.13)

This is one of the most crucial formulas in the construction of the fast Hilbert transform
algorithm. Furthermore, we can extend the above relation to other types of intervals, like
(l,∞) and (l, u], using some appropriate shifting translations. For any constant parameter
values l and u, where l < u, we have

F(1(l,∞) · f)(ξ) =
1

2
f̂(ξ) +

i

2
eiξlH

(
e−iηlf̂(η)

)
(ξ), (2.14a)

F(1(l,u] · f)(ξ) =
∫ ∞

−∞
f̂(η)e

i
2
(ξ−η)(l+u) sin

(ξ−η)(u−l)
2

π(ξ − η)
dη. (2.14b)

Another attractive property of the Hilbert transform is that it can be expanded based on
the Sinc expansion of an analytic function (Feng and Linetsky, 2008), where

Hf(x) = 1

π
PV

∫
R

f(y)

x− y
dy =

∞∑
m=−∞

f(mh)
1− cosπ(x−mh)

h
π(x−mh)

h

, h > 0. (2.15)

Here, h is some fixed discretization step.

3 Dividend-ruin models under time-changed Lévy pro-

cesses

Leung et al. (2008) propose the finite time dividend-ruin model where the firm pays out div-
idends to its shareholders at some upstream barrier according to a dividend barrier strategy
and becomes ruined when the firm asset value hits some downstream default threshold. Ana-
lytical solution to the value function of the restricted firm asset value process can be derived
under the assumption of the Geometric Brownian motion and continuous monitoring of the
upper reflecting (dividend) barrier and lower absorbing (ruined) barrier. In this section, we
would like to consider pricing of the discrete dividend-ruin models under time-changed Lévy
processes using the fast Hilbert transform algorithm.

Let the current time be t0 = 0, and denote the set of monitoring times in the finite time
dividend-ruin model by T = {t0, t1, · · · , tN}, where tN = T is the maturity. Though the
time intervals between successive monitoring times may not be uniform in general, without
loss of generality, we assume a uniform monitoring interval ∆ to simplify the presentation
of the model. For uniform time intervals, we write tk = k∆, k = 0, 1, · · · , N .

Model formulation: reflecting and absorbing barriers
We consider the dividend-ruin model where the logarithm of the unrestricted firm asset value
process At is modeled as a time-changed Lévy process. Under a risk neutral measure Q, we
assume At to follow the following dynamics

At = eYt = erteXTt ,

where XTt is a time-changed Lévy process. We write Y0 = lnA0, where A0 is the firm asset
value at time t0. The liability level L (lower absorbing barrier), visualized as the knock-out
barrier of the firm asset value process, is monitored at a discrete set of times T . On the

8



other hand, the firm may pay out dividends to its shareholders according to a dividend
barrier strategy at the upper barrier B on a monitoring date. More precisely, whenever the
firm asset value rises to the level B on a monitoring date, the excess amount will be paid
out as dividend. Under such dividend barrier strategy, the restricted firm asset value on
a monitoring date can never go above the reflecting barrier B. Subject to the possibilities
of ruin and dividend payouts on monitoring dates, the restricted firm asset value process is
seen to include both the discrete lookback and barrier features.

Let At0 and A
t

0 denote the realized minimum value and maximum value of the firm asset
value process within [0, t] under discrete monitoring. Suppose j = max{i : ti ≤ t}, we have

At0 = min{At0 , At1 , · · · , Atj} and A
t

0 = max{At0 , At1 , · · · , Atj}. (3.1)

Over the finite period [0, t], conditional on survival and adoption of the dividend barrier
strategy, the fraction of the firm asset remaining is given by min(1, B

A
t
0

). Accordingly, it is

convenient to define the non-ruined modified firm asset value Ât at time t by

Ât = Atmin(1,
B

A
t

0

). (3.2)

Note that A
t

0 may exhibit jump across a monitoring date when a new discrete maximum of

the firm asset value process is realized, so does Ât. Likewise, we define the discrete minimum
value of Ât over the interval [T1, T2] by

Â
T2

T1
= min

T1≤tj≤T2
Âtj .

Let Ãt denote the restricted firm asset value process with the two-sided discretely monitored
reflecting and absorbing barriers. The restricted firm asset value at time T is given by

ÃT = ÂT1{ÂT

0 >L}
. (3.3)

The event {Â
T

0 ≤ L} captures the occurrence of ruin when the non-ruined modified firm

asset value Ât falls at or below L at any monitoring time instant over [0, T ].

Value function of the firm asset value process
We are interested in computing the time-t value function of the firm asset value with dis-
cretely monitored lower ruined barrier L and upper dividend barrier B. For pricing un-
der time-changed Lévy processes, recall that vt denotes the activity rate of stochastic time
change. In this paper, we take vt to be the CIR process as defined in Eq. (2.5). We write
γt = ln vt, where γt is the log-activity rate, so the value function depends on γt as well. Let

Vin(At, γt, t; Â
t

0, A
t

0) denote the in-progress time-t value function of the firm asset value with
dependence on the state variables At and γt, together with the path dependent state variable

Â
t

0 and A
t

0. By virtue of risk neutral valuation, Vin is given by the expected present value of
the terminal restricted firm asset value

Vin(At, γt, t; Â
t

0, A
t

0) = Et[e
−r(T−t)ÃT ]. (3.4)

We define V0(At, γt, t) as the “initiation-state” value function corresponding to the state
where At has never reached either the lower absorbing barrier or the upper reflecting barrier
at earlier monitoring times Tt = {t0, · · · , tj}, where j = max{i : ti ≤ t}. The notion
of “initiation-state” value function has been commonly used in pricing lookback options.
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Coined as the “initiation state” value function, V0(At, γt, t) has no dependence on Â
t

0 and

A
t

0. It is instructive to establish the following relation between Vin and V0 (Leung et al.,
2008):

Vin(At, γt, t; Â
t

0, A
t

0) =


V0(

B

A
t
0

At, γt, t) if Â
t

0 > L and A
t

0 > B

V0(At, γt, t) if Â
t

0 > L and A
t

0 ≤ B

0 if Â
t

0 ≤ L

(3.5)

= V0(Ât, γt, t)1{Ât

0>L}
.

In our subsequent exposition, it is more convenient to use Zt = ln Ât as the state variable
and write V (Zt, γt, t) = V0(Ât, γt, t), l = lnL and b = lnB. Next, we would like to develop
the fast Hilbert transform algorithm to compute V (Zt, γt, t).

Jump condition on the value function across a monitoring date
Let t−k and t+k represent the time instant immediately before and after the monitoring date
tk, k = 1, 2, · · · , N . Since there is no cash flow to the holder of the firm asset across a
monitoring date, the value function should remain the same at the instants right before and
after any monitoring date tk. Suppose Zt−k

> b, then Zt+k
is set to become b. This jump

condition across the monitoring time instant tk models the fraction of firm asset value lost
to dividend payout and the resulting firm asset value is reduced to the dividend barrier B
due to the dividend barrier strategy. On the other hand, Zt remains continuous across tk
when Zt−k

≤ b. The ruin feature can be modeled by the indicator function 1{l<Z
t−
k
≤b} so

that the value function becomes zero when Zt−k
≤ l. By following a similar approach used

by Andreasen (1998) for pricing discrete lookback options, the jump condition of the value
function is given by

V (Zt−k
, γtk , t

−
k ) = V (Zt−k

, γtk , t
+
k )1{l<Z

t−
k
≤b} + V (b, γtk , t

+
k )1{Z

t−
k
>b}. (3.6a)

We initiate our time stepping calculations at the instant right before the maturity date tN .
The terminal condition for the value function is set to be

V (Zt−N
, γtN , t

−
N) = e

Z
t−
N 1{l<Z

t−
N
≤b} +B1{Z

t−
N
>b}. (3.6b)

Time-stepping calculations between successive monitoring dates
The martingale pricing theory gives the following risk neutral valuation formula

V (Zt+k
, γtk , t

+
k ) = e−r∆E[V (Zt−k+1

, γtk+1
, t−k+1)|Ft+k

],

where ∆ = tk+1 − tk. By the tower property and conditional on the log-activity rate process
γtk+1

at time tk+1, it follows that

V (Zt+k
, γtk , t

+
k ) = e−r∆E

[
E[V (Zt−k+1

, γtk+1
, t−k+1)|Ft+k

, γtk+1
]|Ft+k

]
.

This expectation formula dictates that the time-stepping calculations between successive
monitoring dates for the value function of the restricted firm asset value under time-changed
Lévy processes can be expressed as a two-dimensional expectation integral. The outer expec-
tation integral involves integration over the density function pγ(γtk+1

|γtk), which has analytic
closed form if the activity rate process vt is chosen to be the CIR process [see Eq. (A.2)]. To
evaluate the two-dimensional expectation integral between successive monitoring dates, we
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apply an interpolation based quadrature rule for the numerical valuation of the outer expec-
tation integral and the Fourier transform method for the inner expectation integral. Across
a monitoring date, due to the the jump condition associated with the discretely monitored
dividend-ruin model as exemplified by Eqs. (3.6a) and (3.6b), we can take advantage of the
fast Hilbert transform method to deal with the barrier feature.

Numerical quadrature rule
As the first step, we apply an appropriate J-point quadrature integration rule (like the
Gauss-Legendre quadrature or composite trapezoidal rule) to effect numerical evaluation of
the outer expectation integral. By performing discretization along the dimension of γtk+1

at
the discrete nodes ζj, j = 1, 2, · · · , J , we obtain

V (Zt+k
, γtk , t

+
k ) ≈ e−r∆

J∑
j=1

wjpγ(ζj|γtk)E
[
V (Zt−k+1

, γtk+1
, t−k+1)|Ft+k

, γtk+1
= ζj

]
, (3.7)

where wj is the weight at the quadrature node ζj, j = 1, 2, · · · , J .

CONV method
To perform the inner expectation calculations, we adopt the CONVmethod that is commonly
used in Fourier option pricing algorithms (Lord et al., 2008; Kwok et al., 2012). In a typical
Fourier option pricing algorithm, in order to guarantee that the Fourier transforms are well
defined, it is necessary to introduce a properly chosen exponential damping factor. Let
w = α + iβ, where α is a constant. At γtk+1

= ζj and Zt−k+1
= x, we define Vα(x, ζj, t

−
k+1) =

eαxV (x, ζj, t
−
k+1), where e

αx is some appropriate exponential damping factor for the value
function V (x, ζj, t

−
k+1) at all nodes ζj. The parameter α is chosen to insure the existence

of the generalized Fourier transform of V (x, ζj, t
−
k+1). The generalized Fourier transform of

V (x, ζj, t
−
k+1) is defined by

V̂α(β, ζj, t
−
k+1) =

∫ ∞

−∞
ewxV (x, ζj, t

−
k+1) dx =

∫ ∞

−∞
eiβxVα(x, ζj, t

−
k+1) dx.

By virtue of the renowned Parseval relation in Fourier transform, we have

E[V (Zt−k+1
, γtk+1

, t−k+1)|Ft+k
, γtk+1

= ζj] =

∫ ∞

−∞
V (x, ζj, t

−
k+1) p(x|Ft+k

, γtk+1
= ζj) dx

=
1

2π

∫ ∞

−∞
V̂α(β, ζj, t

−
k+1)p̌(w|Ft+k

, γtk+1
= ζj) dβ.

(3.8)
Here, p̌(w|Ft+k

, γtk+1
= ζj) = E

[
e−wx|Ft+k

, γtk+1
= ζj

]
is visualized as the generalized inverse

Fourier transform of the conditional density function p(x|Ft+k
, γtk+1

= ζj) of Zt−k+1
. Over

the time period (t+k , t
−
k+1), there is no dividend payment and ruin does not occur. Based

on Eq. (3.2), the dynamics of the unrestricted and non-ruined modified firm asset pro-
cesses are the same over (t+k , t

−
k+1), and we have Zt−k+1

− Zt+k
= Ytk+1

− Ytk . We can rewrite

p̌(w|Ft+k
, γtk+1

= ζj) into the following representation

p̌(w|Ft+k
, γtk+1

= ζj) = e
−wZ

t+
k E[e−w(Ytk+1

−Ytk )|Ft+k
, γtk+1

= ζj]. (3.9)

Recall Ψ(w; γt, γs) = E[ew(Yt−Ys)|Fs, γt], we attempt to relate Ψ(w; γt, γs) to the characteristic
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function of Xt. By the tower property, we have

Ψ(w; γt, γs) = E
[
E[ew(Yt−Ys)|Fs, γt, Tt − Ts]|Fs, γt

]
= E

[
E[ew(Yt−Ys)|Tt − Ts]|Fs, γt

]
= ewr(t−s)E[e−ψX(−iw)(Tt−Ts))|Fs, γt]

= ewr(t−s)Φ
(
iψX(−iw); γt, γs

)
. (3.10)

It is worthwhile to mention that Ψ(w; γt, γs) admits the closed form representation when
incorporating the leverage effect, which has been derived in the previous section. Combining
Eqs. (3.8), (3.9) and (3.10), we may express the inner expectation integral at γtk+1

= ζj as
the following inverse Fourier transform representation

E[V (Zt−k+1
, γtk+1

, t−k+1)|Ft+k
, γtk+1

= ζj] =
1

2π

∫ ∞

−∞
e
−wZ

t+
k V̂α(β, ζj, t

−
k+1)Ψ(−w; ζj, γtk) dβ.

(3.11)

Here, we have set γtk+1
= ζj in the conditional moment generating function Ψ(w; γtk+1

, γtk).

Summary of the computational procedures
Given N + 1 discrete monitoring dates, where T = {tk|k = 0, 1, · · · , N} with tN = T , the
sequential computational steps associated with numerical evaluation of the two-dimensional
expectation integral are summarized as follows:

(i) The backward induction procedure is initiated by adopting the terminal condition as
specified in Eq. (3.6b).

(ii) Time-stepping calculations between two consecutive monitoring dates
The relevant numerical schemes are derived based on the jump condition (3.6a), nu-
merical quadrature rule (3.7) and CONV algorithm (3.11). All these are combined
to effect numerical valuation of the two-dimensional expectation integral. For k =
N − 1, N − 2, · · · , 1, the numerical approximation of V (Zt−k

, γtk , t
−
k ) is given by

V (Zt−k
, γtk , t

−
k )

≈ e−r∆

2π

J∑
j=1

wjpγ(ζj|γtk)
[
1{l<Z

t−
k
≤b}

∫ ∞

−∞
e
−wZ

t−
k V̂α(β, ζj, t

−
k+1)Ψ(−w; ζj, γtk) dβ

+ 1{Z
t−
k
>b}

∫ ∞

−∞
e−wbV̂α(β, ζj, t

−
k+1)Ψ(−w; ζj, γtk) dβ

]
.

(3.12a)

Since Zt0 ∈ (l, b] is assumed, the numerical approximation scheme for k = 0 is reduced
to

V (Zt0 , γt0 , t0) ≈
e−r∆

2π

J∑
j=1

wjpγ(ζj|γt0)
∫ ∞

−∞
e−wZt0 V̂α(β, ζj, t

−
1 )Ψ(−w; ζj, γt0) dβ.

(3.12b)

The evaluation of the above Fourier integrals can be performed using the fast Fourier
transform (FFT) method. In the usual FFT procedure, checking of the knock-out condition
and dividend-barrier payout has to be revealed in the real domain, one has to perform inverse
Fourier transform at each time step in the backward induction to recover the value function
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in the real domain. In this paper, we adopt the use of the fast Hilbert transform method that
can avoid the nuisance of recovering the value function at each of the monitoring instants.
As explained below, such computational convenience is feasible since the barrier conditions
are naturally incorporated in the fast Hilbert transform procedure.

Construction of the fast Hilbert transform algorithm
The key ingredient in the fast Hilbert transform method is that multiplying a function by
the indicator function associated with the barrier feature in the real domain corresponds to
taking Hilbert transform in the Fourier domain. As a result, instead of computingN−1 steps
of Fourier transform inversion and N − 1 steps of Fourier transform as shown in Eq. (3.12a),
the fast Hilbert transform method only requires N−1 steps of convolution computation with
regard to the presence of the lower absorbing (ruined) barrier and upper reflecting (dividend)
barrier.

The backward induction procedure in the Fourier domain using the fast Hilbert transform
algorithm can be formulated as follows:

(i) For k = N , we have the same terminal condition as specified in Eq. (3.6b). We take
the generalized Fourier transform of the terminal payoff to obtain V̂α(β, ζj, t

−
N) [see

Eq. (3.19a)], where we set γtN = ζj, j = 1, 2, · · · , N .

(ii) For the intermediate time steps, k = N−1, N −2, · · · , 1, the numerical approximation
is given by

V̂α(β, ζp, t
−
k ) ≈ e−r∆

∫ ∞

−∞

J∑
j=1

wjV̂α(η, ζj, t
−
k+1)Ψ̃(−α− iη; ζj, ζp)e

i
(β−η)(l+b)

2
sin (β−η)(b−l)

2

π(β − η)
dη

− e−r∆eiβb

2π(α+ iβ)

J∑
j=1

wj

∫ ∞

−∞
e−iηbV̂α(η, ζj, t

−
k+1)Ψ̃(−α− iη; ζj, ζp) dη,

(3.13a)
for p = 1, 2, · · · , J . Here, we set γtk+1

= ζj and γtk = ζp in the conditional moment

generating function Ψ(w; γtk+1
, γtk), and write Ψ̃(w; ζj, ζp) as Ψ(w; ζj, ζp)pγ(ζj|ζp).

(iii) For the last step where k = 0, the numerical approximation to the value function at t0
is obtained by

V (Zt0 , ζp, t0) ≈
e−r∆

2π

J∑
j=1

wj

∫ ∞

−∞
e−(α+iβ)Zt0 V̂α(β, ζj, t

−
1 )Ψ̃(−α− iβ; ζj, ζp) dβ. (3.13b)

To show how to derive the above fast Hilbert transform algorithm from Eqs. (3.6a) and
(3.6b), we take the generalized Fourier transform on both sides of Eq. (3.12a), incorporating
the indicator functions that model the ruined and dividend strategy features. Firstly, it is

necessary to multiply the exponential damping factor e
αZ

t−
k on both sides of Eq. (3.12a) in

order that the Fourier transforms are well defined. Since both the inverse Fourier transform
representation and the indicator function 1{l<Z

t−
k
≤b} include the state variable Zt−k

for the

first term on the right hand side, we make use of the Hilbert transform formula (2.14b) to
deal with the Fourier transform of the product of a function and an indicator function. Due
to nonexistence of the state variable Zt−k

in the inverse Fourier transform representation of
the second term, we take the usual Fourier transform of the second term. In the next step,
using a quadrature rule in the log-activity rate dimension, we perform the computation on a
set of log-activity rate nodes, where γtk+1

= ζj, j = 1, 2, · · · , N . The same set of log-activity
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rate nodes are employed over all time points, which leads to Eq. (3.13a). In the last step, we
compute V (Zt0 , ζp, t0) through one step inverse Fourier transform as shown in Eq. (3.13b).

The kernel function Ψ̃(w; ζj, ζp) is the input that characterizes the time-changed Lévy
processes. By combining Eqs. (A.2), (A.3) and (3.10), the Bessel function presented in
pγ(ζj|ζp) cancels with the Bessel function in the denominator of Ψ(w; ζj, ζp), leaving only
one Bessel term. Furthermore, some special attention should be given to the calculation
of Ψ̃(w; ζj, ζp). First of all, it involves a modified Bessel function of the first kind, which
increases dramatically in value when q → −1 or w → ∞. For computational convenience,
the scaled Bessel function should be used instead. Secondly, some terms in Ψ̃(w; ζj, ζp) may
become quite large when certain set of parameters are chosen, so we have to simplify these
multiplications in computing the numerical value for Ψ̃(w; ζj, ζp). Lastly, one can either use
a spline interpolation to obtain the value of V (Zt0 , γt0 , t0) from V (Zt0 , ζp, t0), or choose the
layout of the grid such that γt0 lies exactly on the grid.

Discrete approximation
We consider the inverse Fourier transform of g

Pg(x) =
1

2π

∫ ∞

−∞
e−iβxg(β, ζj)Ψ̃(−α− iβ; ζj, ζp) dβ, (3.14)

and evaluate the convolution integral in the following form

Qg(β) =

∫ ∞

−∞
g(η, ζj)Ψ̃(−α− iη; ζj, ζp)e

i
(β−η)(l+b)

2
sin (β−η)(b−l)

2

π(β − η)
dη. (3.15)

The inverse Fourier transform can be evaluated numerically by

Ph,Mg(x) =
1

2π

M∑
m=−M

e−ixmhg(mh, ζj)Ψ̃(−α− imh; ζj, ζp)h, (3.16)

while the numerical evaluation of Qg(β) can be effected by the following discretized scheme
at β = nh, where

Qh,Mg(nh) =
M∑

m=−M

g(mh, ζj)Ψ̃(−α− imh; ζj, ζp)e
i
h(n−m)(l+b)

2
sin h(n−m)(b−l)

2

πh(n−m)
h. (3.17)

Here, n = −M, · · · ,M , and h is the step size. The infinite domain is truncated to the finite
truncation domain [−Mh,Mh], where M is referred as the truncation level. The simple
trapezoidal sum approximation is seen to achieve sufficiently high level of accuracy with
exponentially decaying discretization errors.

Toeplitz matrix-vector multiplication
A matrix T is said to be a Toeplitz matrix or diagonal-constant matrix if Tn,m = Tn+1,m+1,
where Tn,m denotes the (n,m)th entry of T . The above convolution integral computation
can be expressed as a Toeplitz matrix-vector multiplication. In our context, we define the
corresponding Toeplitz matrix T whose entries are given by

Tn,m =

 sin
h(n−m) ln B

L
2

π(n−m)
m ̸= n

h ln B
L

2π
m = n

. (3.18)

The computation of the Toeplitz matrix-vector multiplication can be easily embedded into
a circulant matrix. While the usual direct computational cost of the matrix-vector mul-
tiplication is O(M2), it is well known that the multiplication of a circulant matrix by a
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vector can be implemented using the fast Fourier transform with computational complexity
of O(M log2M).

Implementation procedures
We present the detailed implementation procedure of the fast Hilbert transform algorithm
for computing the firm asset value function where the firm asset value process is modeled as
a time-changed Lévy process with an upper reflecting barrier and a lower absorbing barrier.
Firstly, it is necessary to choose a proper factor α to guarantee the existence of the gener-

alized Fourier transforms. Note that V (Zt−N
, γtN , t

−
N) = e

Z
t−
N 1{l<Z

t−
N
≤b} + B1{Z

t−
N
>b} ∈ L1(R)

for any α < 0. Also, recall that α ∈ LX , so we have α ∈ (λ−, 0).

Step 1: Preparation
Calculate the generalized Fourier transform of the terminal payoff using the analytic formula

V̂α(β, ζj, t
−
N) =

Be(α+iβ)b − Le(α+iβ)l

α+ iβ + 1
− Be(α+iβ)b

α+ iβ
, β = −Mh, · · · ,Mh. (3.19a)

Prepare the matrix with elements Ψ̃(−α− imh; ζj, ζp) for p = 1, 2, · · · , J .

Step 2: Backward induction in the Fourier domain
Based on Eqs. (3.13a) and (3.17), by interchanging the order of summations, we compute
V̂α(β, ζp, t

−
k ) as follows

V̂α(β, ζp, t
−
k )

≈ e−r∆ei
β(l+b)

2

M∑
m=−M

e−i
mh(l+b)

2

J∑
j=1

wjV̂α(mh, ζj, t
−
k+1)Ψ̃(−α− imh; ζj, ζp)

sin (β−mh)(b−l)
2

π(β −mh)
h

− e−r∆eiβb

2π(α+ iβ)

M∑
m=−M

e−imhb
J∑
j=1

wjV̂α(mh, ζj, t
−
k+1)Ψ̃(−α− imh; ζj, ζp)h,

(3.19b)
where β = −Mh, · · · ,Mh.

Repeat Step 2 for k = N − 1, · · · , 1.

Step 3: Inversion of Fourier transform at the final step to recover the value function
We approximate the inverse Fourier transform representation in Eq. (3.13b) by a numerical
quadrature rule to recover the value function at time t0 as follows

V (Zt0 , ζp, t0) ≈
e−r∆

2π

J∑
j=1

wj

M∑
m=−M

e−(α+imh)Zt0 V̂α(mh, ζj, t
−
1 )Ψ̃(−α− imh; ζj, ζp)h. (3.19c)

One can use a spline interpolation to obtain V (Zt0 , γt0 , t0) from the grid value functions
V (Zt0 , ζp, t0), p = 1, 2, · · · , J .

Remarks

1. Since the initial firm asset value A0 is substituted into the pricing formulation only in
the final step of the algorithm, the fast Hilbert transform algorithm can be used to find
the value function at varying values of A0 simultaneously with almost no additional
computational cost.
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2. Like other Fourier option pricing algorithms, the fast Hilbert transform algorithm can
compute the delta and gamma of the value function with essentially no additional
computational effort.

We write V̂α(nh, ζp, tk) as the grid function for V̂α(β, ζp, t
−
k ) at β = nh. To deal with

the lower absorbing (ruined) barrier and upper reflecting (dividend) barrier, we replace the
backward induction procedure in Eq. (3.19b) by

V̂α(nh, ζp, tk)

= e−r∆

{
ei

nh(l+b)
2

M∑
m=−M,m ̸=n

e−i
mh(l+b)

2

J∑
j=1

wjV̂α(mh, ζj, tk+1)Ψ̃(−α− imh; ζj, ζp)
sin

h(n−m) ln B
L

2

π(n−m)

+
J∑
j=1

wjV̂α(nh, ζj, tk+1)Ψ̃(−α− inh; ζj, ζp)
h ln B

L

2π

}

− e−r∆einhb

2π(α+ inh)

M∑
m=−M

e−imhb
J∑
j=1

wjV̂α(mh, ζj, tk+1)Ψ̃(−α− imh; ζj, ζp)h, (3.20)

where n = −M, · · · ,M . Since the above computation involves a Toeplitz matrix-vector
multiplication at each time step, the backward induction in the Fourier domain can be
formulated in an easier readable format in matrix/vector notation in Step 2. We introduce
the following notations: V̂α(tk+1) is a (2M + 1) × J matrix with elements V̂α(mh, ζj, tk+1),

Ψ̃(ζp) is a (2M +1)× J matrix with elements Ψ̃(−α− imh; ζj, ζp) for p = 1, 2, · · · , J , w is a
column vector containing the quadrature weights. We construct the following matrix/vector
multiplication

κp(tk) = [V̂α(tk+1) · Ψ̃(ζp)]w, p = 1, 2, · · · , J ;

B(tk) = [κ1(tk),κ2(tk), · · · ,κJ(tk)],

where κp(tk) is a column vector of dimension 2M + 1, B(tk) is a (2M + 1)× J matrix, and
the operator “ · ” denotes an element-wise matrix-matrix product.

Let H and F be the (2M + 1) × J matrices whose entries are Hm,p = e−i
mh(b+l)

2 and

Fm,p = ei
mh(b+l)

2 , respectively. Also, let ξ and s be the column vectors composed of elements

from ξm = e−imhbh and sm = eimhb

α+imh
, respectively. According to Eq. (3.20), we can rewrite

the backward induction in the Fourier domain in the following matrix/vector form

V̂α(tk) = e−r∆[T (B(tk) ·H)] · F − e−r∆

2π
s[ξTB(tk)], (3.21)

where T is the Toeplitz matrix defined in Eq. (3.18). We take advantage of the matrix-vector
multiplication in the Toeplitz matrix, which can achieve O(M log2M) complexity in the log-
asset return dimension. Moreover, the same Toeplitz matrix is used from step to step. Only
two runs of the fast Fourier transform are required for each time step. In fact, we only need
to update B(tk) to recover V̂α(tk) at each time step.

The enhanced version of the fast Hilbert transform algorithm is summarized in the table
below.
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Algorithm: Pricing dividend-ruin firm asset value model under time-
changed Lévy processes.

Preparation
Calculate V̂α(tN) using the analytic formula (3.19a);

Prepare matrix Ψ̃(ζp) for p = 1, 2, · · · , J ;
Prepare matrices H,F , and vectors ξ, s;
Calculate the first row and column of the Toeplitz matrix T .

Backward induction
Calculate κp(tk) = [V̂α(tk+1) · Ψ̃(ζp)]w for p = 1, 2, · · · , J , and update B(tk);

Compute V̂α(tk) by Eq. (3.21) using FFT algorithm for k = N − 1, · · · , 1.

Firm asset value function at t0
Calculate the firm asset value function by Eq. (3.19c). Use a spline interpolation
to obtain V (Zt0 , γt0 , t0).

Computational complexity
We adopt the Gauss-Legendre quadrature rule in the log-activity rate dimension. The com-
putational effort in the preparation step with non-equidistant quadrature rules is dominated
by the computation of the matrices Ψ̃(ζp), p = 1, 2, · · · , J , which involve numerical valua-
tion of the modified Bessel functions. Recall that the computation of the modified Bessel
function costs significantly more than a simple multiplication. More precisely, suppose the
computation of the Bessel function costs A times the number of operations needed for a
multiplication, the matrices Ψ̃(ζp), p = 1, 2, · · · , J would require O(AMJ2) operations to
compute all matrix elements.

As far as the computation in the main loop of the algorithm is concerned, it is dom-
inated by the term [T (B(tk) · H)] · F . Since the computation of the vector κp(tk) costs
O(MJ) operations, it leads to O(MJ2) complexity for the calculation of the matrix B(tk).
The computation of the product s[ξTB(tk)] costs O(MJ2) operations. The overall compu-
tational complexity for the term [T (B(tk) · H)] · I is O(M log2MJ2) by taking advantage
of the special structure of the Toeplitz matrix T and the use of fast Fourier transform.
The complexity is lower compared to a direct computation with computational complexity
O(M2J2). As a result, the overall complexity of the fast Hilbert transform algorithm is
O
(
max[A, N log2M ]MJ2

)
.

In summary, the essence of the fast Hilbert transform method is that the numerical
computation remains in the Fourier domain and only one Fourier inversion is required in the
final step. The fast Fourier transform method requires twice as many computations as the
Hilbert transform method. This is because we need to compute both the Fourier transform
and the inverse Fourier transform at each monitoring time instant in the backward induction.
Also, it is well known that the FFT method has to observe a restriction on the step size,
where ∆x∆β = 2π/M . Furthermore, the trapezoidal quadrature rule used in computing the
Fourier transform of option value is second order accurate in the discretization step size in
the dimension of log-asset return. Feng and Linetsky (2008) show that if one adopts the fast
Hilbert transform method, the trapezoidal quadrature rule used in computing the inverse
Fourier transform (3.14) and convolution integral (3.15) has exponentially decaying errors
due to analyticity of the integrand in the appropriate strip in the complex plane.
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4 Bermudan options

In this section, we would like to discuss the fast Hilbert transform algorithm for pricing
Bermudan options under time-changed Lévy processes, where the computational procedures
involve numerical evaluation of a sequence of inverse Fourier and Hilbert transforms. Our
pricing algorithm is developed by applying the fast Hilbert transform method in the log-
asset return dimension and adopting the quadrature rule in the numerical integration of the
log-activity rate of stochastic time change. Suppose the current time is t0 = 0 and the set
of monitoring times for the Bermudan option is denoted by T = {t1, · · · , tN}, where tN = T
is maturity. By assuming a uniform time interval ∆, we set tk = k∆, k = 0, 1, · · · , N . The
Bermudan option can be exercised at any time tk ∈ T with the exercise payoff G̃(Stk). Note

that G̃(S) = (S−K)+ for the call payoff and G̃(S) = (K −S)+ for the put payoff, where K
is the strike price. In this paper, we focus our discussion on pricing Bermudan put options
and similar pricing approach can be applied to Bermudan call options. Also, pricing of an
American option can be achieved by taking the limit of vanishing time interval between
successive monitoring dates in the Bermudan option counterpart; that is, taking ∆ → 0.

Determination of the critical asset prices
The optimal stopping problem of a Bermudan put option is characterized by the set of
critical asset prices to be determined at all monitoring times below which it is optimal for
the option holder to exercise the Bermudan put option. The main step in the fast Hilbert
transform algorithm is the determination of the critical asset price S∗

k(γtk) at monitoring time
tk and level γtk of the log-activity rate under time-changed Lévy processes, k = 1, 2, · · · , N .
Assuming the underlying asset to be non-dividend paying, it is known that the critical asset
price S∗

N(γtN ) is K at maturity tN . The critical asset prices S
∗
k(γtk), k = N −1, N −2, · · · , 1

are determined successively using backward induction. First of all, we would like to establish
the existence of a unique value for S∗

k(γtk) where 0 < S∗
k(γtk) < K for k = N−1, N−2, · · · , 1.

Proposition 1 Assuming r ≥ 0, for k = 1, 2, · · · , N − 1, there exists a unique critical asset
price S∗

k(γtk) where 0 < S∗
k(γtk) < K such that the Bermudan put option value Ṽ (Stk , γtk , tk)

satisfies

Ṽ (Stk , γtk , tk) = G̃(Stk)1(0,S∗
k(γtk )]

+ e−r∆Etk [Ṽ (Stk+1
, γtk+1

, tk+1)]1(S∗
k(γtk ),∞), (4.1)

where Etk denotes the expectation conditional on Stk and γtk .

The proof of Proposition 1 is relegated to Appendix B. At the monitoring instant tk,
for any given level γtk of the log-activity rate, it is optimal to exercise the Bermudan put
option when Stk lies in the exercise region (0, S∗

k(γtk)] and the option remains alive when Stk
lies in the continuation region (S∗

k(γtk),∞). The exercise region and continuation region are

separated by the critical asset price S∗
k(γtk). The continuation value C̃(Stk , γtk , tk) is given

by e−r∆Etk [Ṽ (Stk+1
, γtk+1

, tk+1)].

Backward induction in the state space
We consider the log-asset return process normalized by the strike price K under the time-
changed Lévy process XTt as follows

Yt = ln
St
K

= rt+XTt . (4.2)

For a Bermudan put option, the exercise payoff at a monitoring date tk is given by G(Ytk) =

G̃(Stk) = K(1− eYtk )+. We write the Bermudan put option value and continuation value as
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V (Yt, γt, t) = Ṽ (St, γt, t) and C(Yt, γt, t) = C̃(St, γt, t), respectively. At any monitoring time,
the price of the Bermudan put option is given by the maximum of the continuation value
and exercise payoff. Given N discrete monitoring dates, where T = {tk|k = 1, · · · , N} with
tN = T , the Bermudan put option pricing formula can be expressed as

V (Ytk , γtk , tk) =


G(YtN ) for k = N

max{C(Ytk , γtk , tk), G(Ytk)} for k = 1, 2, · · · , N − 1

C(Yt0 , γt0 , t0) for k = 0

.

Continuation value
We express the continuation value C(Ytk , γtk , tk) as a two-dimensional expectation integral
and evaluate the expectation in the log-activity rate dimension using numerical integration.
Using the tower property and an appropriate quadrature rule, the continuation value at the
monitoring time tk is given by

C(Ytk , γtk , tk) = e−r∆E
[
E[V (Ytk+1

, γtk+1
, tk+1)|Ftk , γtk+1

]|Ftk

]
≈ e−r∆

J∑
j=1

wjpγ(ζj|γtk)E[V (Ytk+1
, γtk+1

, tk+1)|Ftk , γtk+1
= ζj]. (4.3)

where ζj, j = 1, 2, · · · , J are the node points in the quadrature rule for the log-activity
rate. Next, the inner expectation is evaluated numerically in the Fourier domain via the
CONV method. Applying the usual procedure of damping the value functions, we define
Cα(Yt, γt, t) = eαYtC(Yt, γt, t), Vα(Yt, γt, t) = eαYtV (Yt, γt, t) and Gα(Yt) = eαYtG(Yt). By
following a similar procedure that derives the inner expectation integral in terms of inverse
Fourier transform representation, we obtain

E[V (Ytk+1
, γtk+1

, tk+1)|Ftk , γtk+1
= ζj] =

1

2π

∫ ∞

−∞
e−wYtk V̂α(β, ζj, tk+1)Ψ(−w; ζj, γtk) dβ,

(4.4)
where w = α + iβ and V̂α(β, γt, t) denotes the generalized Fourier transform of V (Yt, γt, t).
The combination of Eqs. (4.3) and (4.4) leads to the following analytic approximation formula

Cα(Ytk , γtk , tk) ≈
e−r∆

2π

J∑
j=1

wj

∫ ∞

−∞
e−iβYtk V̂α(β, ζj, tk+1)Ψ̃(−w; ζj, γtk) dβ, (4.5)

where Ψ̃(w; ζj, γtk) = Ψ(w; ζj, γtk)pγ(ζj|γtk).

Fourier transform algorithm
Given N discrete monitoring dates as characterized by the point set T = {tk|k = 1, · · · , N}
with tN = T , the backward induction procedure for pricing a Bermudan put option can be
summarized as follows:

1. Initiation of the (damped) value function as specified by the terminal payoff

Vα(YtN , γtN , tN) = Gα(YtN ). (4.6a)

2. Determination of the critical asset prices and backward induction calculations of the
option value
We let x∗k(γtk) = lnS∗

k(γtk). At the critical asset price x∗k(γtk), we have equality of the
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exercise payoff and continuation value. For k = N − 1, N − 2, · · · , 1, x∗k(γtk) solves the
algebraic equation

Gα(x) =
e−r∆

2π

J∑
j=1

wj

∫ ∞

−∞
e−iβxV̂α(β, ζj, tk+1)Ψ̃(−α− iβ; ζj, γtk) dβ. (4.6b)

The (damped) option value at time tk is approximated by

Vα(Ytk , γtk , tk)

≈ 1(−∞,x∗k(γtk )]
Gα(Ytk)

+ 1(x∗k(γtk ),∞)
e−r∆

2π

J∑
j=1

wj

∫ ∞

−∞
e−iβYtk V̂α(β, ζj, tk+1)Ψ̃(−α− iβ; ζj, γtk) dβ.

(4.6c)

The above procedure illustrates the implementation of the backward induction using the
Fourier transform based method, where N − 1 steps of Fourier transform inversion and
N − 1 steps of Fourier transform are performed. However, we would like to reformulate the
backward induction calculations by taking advantage of the elegant properties of the fast
Hilbert transform method.

The fast Hilbert transform algorithm for Bermudan put options
The backward induction in the Fourier domain can proceed as follows. We start with k = N ,
where

V̂α(β, ζj, tN) = Ĝα(β), j = 1, 2, · · · , J. (4.7a)

For k = N − 1, N − 2, · · · , 1, we apply an efficient root-finding method (like the Newton-
Raphson method) to find x∗k,p by solving Eq. (4.6b) on each log-activity rate node γtk = ζp,

p = 1, 2, · · · , J . The numerical approximation of V̂α(β, ζp, tk) is given in terms of the Hilbert
transform

V̂α(β, ζp, tk) ≈ F
(
Gα(Ytk)1(−∞,x∗k,p]

)
(β)

+
e−r∆

2

J∑
j=1

wjV̂α(β, ζj, tk+1)Ψ̃(−α− iβ; ζj, ζp)

+
ie−r∆

2
eiβx

∗
k,pH

(
e−iηx

∗
k,p

J∑
j=1

wjV̂α(η, ζj, tk+1)Ψ̃(−α− iη; ζj, ζp)
)
(β),

(4.7b)

for p = 1, 2, · · · , J . The numerical approximation to the Bermudan put option value at
initiation is given by

V (Yt0 , ζp, t0) ≈
e−r∆

2π

J∑
j=1

wj

∫ ∞

−∞
e−(α+iβ)Yt0 V̂α(β, ζj, t1)Ψ̃(−α− iβ; ζj, ζp) dβ. (4.7c)

The justification of the above backward induction procedure is presented below. Firstly,
we need to determine the critical asset prices. By setting γtk = ζp, p = 1, 2, · · · , J ,
we use Eq. (4.6b) to obtain the critical asset prices. Note that the Fourier transform of∫∞
−∞ e−iβYtk V̂α(β, ζj, tk+1)Ψ̃(−α−iβ; ζj, γtk) dβ is the product V̂α(β, ζj, tk+1)Ψ(−α−iβ; ζj, γtk).
Taking the Fourier transform on both sides of Eq. (4.6c) and using the Hilbert transform
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formula Eq. (2.14a), we obtain

V̂α(β, γtk , tk) ≈ F
(
Gα(Ytk)1(−∞,x∗k(γtk )]

)
(β)

+
e−r∆

2

J∑
j=1

wjV̂α(β, ζj, tk+1)Ψ̃(−α− iβ; ζj, γtk)

+
ie−r∆

2
eiβx

∗
k(γtk )H

(
e−iηx

∗
k(γtk )

J∑
j=1

wjV̂α(η, ζj, tk+1)Ψ̃(−α− iη; ζj, γtk)
)
(β).

Setting γtk = ζp, p = 1, 2, · · · , J , we obtain Eq. (4.7b). Finally, since the inverse Fourier
transform representation of e−r∆E[V (Yt1 , ζj, t1)|Ft0 ] gives the continuation value at time t0
[see Eq. (4.5)], we obtain the Bermudan put option value at initiation as shown in Eq. (4.7c).

Discrete approximation
In the fast Hilbert transform algorithm for pricing Bermudan options, we also need to eval-
uate the Hilbert transform of the following form

Rg(β) = H
(
e−iηxg(η, ζj)Ψ̃(−α− iη; ζj, ζp)

)
(β), (4.8)

which can be evaluated by the truncated Sinc approximation [see Eq. (2.15)] as follows

Rh,Mg(β) =
M∑

m=−M

e−imhxg(mh, ζj)Ψ̃(−α− imh; ζj, ζp)
1− cosπ(β−mh)

h
π(β−mh)

h

. (4.9a)

Here, β = −Mh, · · · ,Mh, h is the step size and M is the truncation level. The trapezoidal
sum approximation is highly accurate, exhibiting exponentially decaying discretization er-
rors. In this case, the corresponding Toeplitz matrix is given by

Tn,m =
1− cosπ(nh−mh)

h
π(nh−mh)

h

=

{
1−(−1)n−m

π(n−m)
m ̸= n

0 m = n
. (4.9b)

Based on Eqs. (4.7b) and (4.9a), by substituting the elements of the Toeplitz matrix defined
in Eq. (4.9b), we obtain

V̂α(nh, ζp, tk)

= F
(
Gα(Ytk , tk)1(−∞,x∗k,p]

)
(nh) +

e−r∆

2

J∑
j=1

wjV̂α(nh, ζj, tk+1)Ψ̃(−α− inh; ζj, ζp)

+
ie−r∆einhx

∗
k,p

2

M∑
m=−M,m ̸=n

e−imhx
∗
k,p

J∑
j=1

wjV̂α(mh, ζj, tk+1)Ψ̃(−α− imh; ζj, ζp)
1− (−1)n−m

π(n−m)
,

(4.10)
where n = −M, · · · ,M . Next, we approximate the initial option value using the trapezoidal
rule as follows

V (Yt0 , ζp, t0) ≈
e−r∆

2π

J∑
j=1

wj

M∑
m=−M

e−(α+imh)Yt0 V̂α(mh, ζj, t1)Ψ̃(−α− imh; ζj, ζp)h. (4.11)

Similar to the dividend-ruin model, the backward induction calculations performed in
the Fourier domain can be formulated in an easy readable format in matrix/vector notation.
We construct the following matrix/vector multiplication:

κp(tk) = [V̂α(tk+1) · Ψ̃(ζp)]w, p = 1, 2, · · · , J ;
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B(tk) = [κ1(tk),κ2(tk), · · · ,κJ(tk)],

where κp(tk) is a column vector of dimension 2M + 1, B(tk) is a (2M + 1) × J matrix,

and the operator “ · ” denotes an element-wise matrix-matrix product. Let H,F and Ĝ be
(2M + 1) × J matrices whose entries are Hm,p(tk) = e−imhx

∗
k,p , Fm,p(tk) = eimhx

∗
k,p and

Ĝm,p(tk) = F
(
Gα(Ytk , tk)1(−∞,x∗k,p]

)
(mh), respectively. According to Eq. (4.10), we can

rewrite the backward induction in the Fourier domain in the following matrix/vector form

V̂α(tk) = Ĝ(tk) +
e−r∆

2
B(tk) +

e−r∆i

2

[
T
(
B(tk) ·H(tk)

)]
· F (tk). (4.12)

Taking advantage of the structure of the Toeplitz matrix, the FFT algorithm can be applied
to achieve O(M log2M) complexity in the dimension of the log-asset return.

Root-finding procedure for solving the critical asset prices
The fast Hilbert transform algorithm for pricing a Bermudan put option involves the deter-
mination of the critical asset prices. We adopt an efficient root-finding procedure, like the
Newton-Raphson method to solve Eq. (4.6b) at varying values of γtk that are set equal to
ζp, p = 1, 2, · · · , J . An initial guess is needed when using the Newton-Raphson method. For
example, we may start with the initial guess x∗k,p = x∗k+1,p or x

∗
k,p = x∗k,p−1. Suppose f(x) = 0

is the equation whose root is to be found. Let the current iterate be x̃, the Newton-Raphson
method determines the next iterate by replacing x̃ by x̃ − f(x̃)/f ′(x̃). In our context, we
approximate the corresponding f(x) and f ′(x) by using the trapezoidal rule with the step
size h and truncation level M as follows

f(x) =
e−r∆

2π

J∑
j=1

wj

M∑
m=−M

e−imhxV̂α(mh, ζj, tk+1)Ψ̃(−α− imh; ζj, ζp)h−Gα(x),

f ′(x) = −e
−r∆i

2π

J∑
j=1

wj

M∑
m=−M

e−imhxmhV̂α(mh, ζj, tk+1)Ψ̃(−α− imh; ζj, ζp)h−G′
α(x),

whereG′
α(x) = Keαx[α−(1+α)ex]. The root-finding procedure is repeated until |f(x̃)/f ′(x̃)| <

ε, where ε is some small tolerance value.

Generalized Fourier transform of payoff conditional on early exercise
For a Bermudan put option, the (damped) exercise payoff is given by Gα(Ytk) = KeαYtk (1−
eYtk )+ ∈ L1(R) for any α > 0, k = 1, 2, · · · , N . Recall α ∈ LX and together with α > 0, so
we have α ∈ (0, λ+). We calculate the generalized Fourier transform of the product of the
exercise payoff and indicator function via the following Fourier transform formula

F
(
Gα(Ytk)1(−∞,x∗k,p]

)
(β) =


K

(α+iβ)(α+iβ+1)
k = N

K
(

1
α+iβ

− e
x∗k,p

α+iβ+1

)
e(α+iβ)x

∗
k,p k = N − 1, · · · , 1

, (4.13)

where β = −Mh, · · · ,Mh.
The enhanced version of the fast Hilbert transform algorithm is summarized in the table

below.
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Algorithm: Pricing Bermudan put options under time-changed Lévy
processes.

Preparation
Calculate V̂α(tN) using the Fourier transform (4.13) for k = N ;

Prepare the matrix Ψ̃(ζp) for p = 1, 2, · · · , J ;
Calculate the first row and column of the Toeplitz matrix T .

Backward induction
Determine the critical asset prices by the Newton-Raphson root-finding method;
Update H(tk), F (tk) and Ĝ(tk);

Calculate κp(tk) = [V̂α(tk+1) · Ψ̃(ζp)]w for p = 1, 2, · · · , J, and update B(tk);

Compute V̂α(tk) by Eq. (4.12) using FFT algorithm for k = N − 1, · · · , 1.

Initial option value
Calculate the initial option value by Eq. (4.11). Use a spline interpolation
to obtain V (Yt0 , γt0 , t0).

Computational complexity
We adopt the Gauss-Legendre quadrature rule in the log-activity rate dimension. The com-
putational effort in the preparation step with non-equidistant quadrature rules is dominated
by the computation of the matrices Ψ̃(ζp), p = 1, 2, · · · , J , which require O(AMJ2) opera-
tions to compute all matrix elements.

We determine the critical asset prices by the Newton-Raphson method in the main loop
of the algorithm. Numerical tests show that 3 to 4 iterations are sufficient to achieve ac-
curate solution within good tolerance limit. The computational cost in the above step is
O(MJ2). In fact, the computation in the main loop is dominated by numerical evaluation
of the elements in [T (B(tk) · H(tk))] · I(tk). Since the calculation of the components in
the vector κp(tk) costs O(MJ) operations, it leads to O(MJ2) complexity for the calcula-
tion of the elements in the matrix B(tk). Hence, the overall computational complexity for
[T (B(tk) ·H(tk))] ·I(tk) is O(M log2MJ2), which is achieved by taking advantage of the spe-
cial structure of the Toeplitz matrix T and the use of the fast Fourier transform. As a result,
the overall complexity of the fast Hilbert transform algorithm is O

(
max[A, N log2M ]MJ2

)
.

Remarks

1. The fast Hilbert transform algorithm can be used to obtain the Bermudan put option
values at varying values of S0 simultaneously with almost no additional cost. Also, the
option delta and gamma can be obtained with essentially no additional computational
effort. Specifically, the last step Eq. (4.11) can be slightly modified to compute the
option delta

∂V (Yt0 , ζp, t0)

∂S0

≈ − e−r∆

2πS0

J∑
j=1

wj

M∑
m=−M

(α+ imh)e−(α+imh)Yt0 V̂α(mh, ζj, t1)Ψ̃(−α− imh; ζj, ζp)h.

2. In our fast Hilbert transform algorithm for pricing Bermudan options under time-
changed Lévy processes, the same Toeplitz matrix can be used from one time step
to the next. Only two runs of the fast Fourier transform are required for each time
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step, exhibiting exponentially decaying pricing errors. Fang and Oosterlee (2011) pro-
pose a Fourier-cosine series expansion approach to price Bermudan options under the
Heston model. The discrete approximation in their algorithm is implemented using
the Toeplitz and Hankel matrix-vector multiplications. However, the corresponding
Toeplitz and Hankel matrices are time-variant matrices. Furthermore, the Fourier-
cosine algorithm requires five runs of the fast Fourier transform for each time step.

5 Numerical tests on the Hilbert transform algorithms

In this section, we would like to demonstrate the performance of the fast Hilbert transform
algorithms for pricing the dividend-ruin model and Bermudan put options under two choices
of time-changed Lévy processes: Heston’s stochastic volatility model and Normal Inverse
Gaussian process time-changed by the CIR process.

5.1 Dividend-ruin model

We present sample calculations for finding the firm asset value function in the dividend-ruin
model where the firm asset value process follows a time-changed Lévy process. In our first
test case, we choose the underlying asset process to follow the Heston model. The following
set of parameter values of the Heston model for pricing the dividend-ruin model are used in
our sample calculations (see Table 1). The Heston model parameter values are obtained by
minimizing the sum of squared pricing errors between the market prices of S&P 500 options
and the model-determined prices (Bakshi et al., 1997).

A0 T B L r λ η v̄ v0 ρ
10 1 13 7 0.04 1.15 0.39 0.0348 0.0348 -0.64

Table 1: Parameter values of the Heston model for pricing the dividend-ruin model

Recall that ν = 2λv̄
η2

− 1 and the satisfaction of the Feller condition is equivalent to

ν ≥ 0 (see Appendix A). For the above model parameters obtained from the market options
data, it is seen that ν = −0.47 < 0. Therefore, the CIR process as specified by the model
parameters in Table 1 does not satisfy the Feller condition. In this case, the left tail of the
activity rate density grows extremely fast in value. Thanks to the transformation from the
activity rate domain to the log-activity rate domain, we manage to obtain very accurate
numerical results using the fast Hilbert transform algorithm. To demonstrate the impact of
the violation of the Feller condition, we also consider another case with λ set to be 2.5 while all
other parameters remain unchanged. In this case, the Feller condition is satisfied. For both
cases, the numerical results for the firm asset value function obtained from the fast Hilbert
transform algorithm with varying number of monitoring instants N are compared with the
benchmark results obtained using the Monte Carlo method (see Table 2). Good agreement
of the numerical results from the two numerical methods is observed. This confirms high
level of accuracy of the fast Hilbert transform algorithm even under the scenario where the
Feller condition fails. We also report the CPU times required for the numerical computation
using the Hilbert transform algorithm. It takes a longer time to achieve the same level
of accuracy when the Feller condition fails. The failure of the Feller condition leads to
the phenomenon where the left-side tail of the log-activity rate density function converges
slower to zero. Consequently, we have to set the truncation range in the log-activity rate
dimension to be wider in order to achieve the same tolerance level in numerical accuracy.
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When performing numerical calculations in a wider truncation range, a larger value of J is
required for the same level of accuracy. Note that J = 27 is used when λ = 2.5 while J = 28

when λ = 1.15. With regard to pricing behavior, the firm asset value is seen to decrease as
the number of monitoring instants increases. That is consistent with financial intuition that
higher frequency of monitoring leads to greater loss in the firm asset value.

λ J N Hilbert Transform Monte Carlo RE(%) Time (sec)
60 9.3938 9.3921 (0.0052) 0.02 30.8

2.5 27 90 9.3668 9.3738 (0.0053) 0.07 38.1
120 9.3564 9.3662 (0.0054) 0.10 46.1
60 9.3417 9.3528 (0.0054) 0.12 156.0

1.15 28 90 9.3194 9.3363 (0.0054) 0.18 171.5
120 9.3123 9.3257 (0.0055) 0.14 199.9

Table 2: Comparison of the numerical results for the firm asset value obtained from the
fast Hilbert transform algorithm (truncation level parameter: M = 28 and damping factor:
α = −4) with the benchmark results obtained using the Monte Carlo method with M = 105

simulation paths. The numerical values shown in brackets are the standard errors in the
Monte Carlo simulation. RE denotes the relative percentage error using the fast Hilbert
transform algorithm. The required computational time to achieve the same level of numerical
accuracy is several times more when the Feller condition is not satisfied (corresponding to
λ = 1.15).

Next, we would like to examine the rate of convergence of the fast Hilbert transform
algorithm with regard to M (truncation level parameter in the log-asset return dimension).
We compute the benchmark price for the fast Hilbert transform algorithm by taking a suf-
ficiently large value of M = 16, 384 for N = 120. As revealed from Figure 1, the numerical
results exhibit exponential rate of decay of the pricing error with respect to M , confirming
with similar observations in the numerical performance of the fast Hilbert transform algo-
rithm reported in Feng and Linetsky (2008). Figure 2 shows the firm asset value function
V (Zt0 , γt0 , t0) as a function of initial firm asset value A0. We also compare the firm asset
value function with and without the embedded ruin and dividend barrier features at varying
values of initial firm asset value A0.

Next, we consider pricing of the firm asset value under the NIG-CIR model, which is a
time-changed Lévy process having the Normal Inverse Gaussian process as the base Lévy
process and the CIR process as the activity rate process of time change. The characteristic
function of the Normal Inverse Gaussian process is given by

ϕt(ξ) = exp

(
iµtξ − δNIGt

(√
α2
NIG − (βNIG + iξ)2 −

√
α2
NIG − β2

NIG

))
, (5.1a)

where µ is determined by the martingale condition to be

µ = δNIG

(√
α2
NIG − (βNIG + 1)2 −

√
α2
NIG − β2

NIG

)
. (5.1b)

For the NIG process, we have (λ−, λ+) = (βNIG−αNIG, βNIG+αNIG). The parameter values
of the NIG-CIR process for pricing the dividend-ruin model used in our sample calculations
are listed in Table 3, which are taken from the same set of parameter values obtained in
Schoutens and Symens (2002) from their calibration to the S&P 500 option prices. For
the given set of model parameter values in Table 3, one can check that ν = −0.5182 < 0,
signifying the failure of the Feller condition of the CIR process.
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A0 T r N αNIG βNIG δNIG λ η v̄ v0
10 0.75 0.04 100 18.4815 -4.8412 0.4685 0.5391 1.8772 1.5746 1

Table 3: Parameter values of the NIG-CIR process for pricing the dividend-ruin model.

We resort to the Monte Carlo method to obtain benchmark results for comparison of
accuracy. In the Monte Carlo procedure, the key step involves approximating the Lévy
process by the compound Poisson process (Schoutens and Symens, 2002). In Table 4, we
show the comparison of the numerical results using the fast Hilbert transform method and
the Monte Carlo method for varying set of values for the upper barrier and lower barrier.

B L Monte Carlo
M = 28 M = 29

HT RE(%) Time (sec) HT RE(%) Time (sec)
12 8 9.0279 (0.0071) 9.0187 0.10 172.6 9.0343 0.07 342.6
12 7 9.6227 (0.0040) 9.6410 0.19 172.8 9.6266 0.04 342.2
13 8 9.1347 (0.0069) 9.1232 0.13 172.6 9.1312 0.04 342.4
13 7 9.7238 (0.0037) 9.7083 0.16 171.9 9.7160 0.08 342.3
14 6 9.9295 (0.0017) 9.9212 0.08 172.7 9.9247 0.05 342.9

Table 4: Comparison of the numerical results for the firm asset value obtained from the
fast Hilbert transform algorithm (truncation level parameter: J = 28 and damping factor:
α = −5) with the benchmark results obtained using the Monte Carlo method with M = 105

simulation paths. The numerical values shown in brackets are the standard errors in the
Monte Carlo simulation. HT denotes the numerical results obtained from the fast Hilbert
transform algorithm.

Due to computational convenience achieved by adopting the log-activity rate, the pro-
posed Hilbert transform algorithm works well even under the failure of the Feller condition.
As shown in Table 4, higher value of M leads to higher level of numerical accuracy at the
cost of computational times. Intuitively, when B and L are sufficiently far from A0 = 10, the
firm asset value function becomes quite close to the initial firm asset value. This is consistent
with the numerical results shown in Table 4, where the firm asset value equals 9.92 (only
0.08 below A0 = 10 in value) when B = 14 and L = 6.

5.2 Bermudan options

We now consider pricing Bermudan put options under time-changed Lévy processes. Firstly,
we assume the underlying asset process to follow the Heston model. The parameter values
in the Bermudan put option are shown in Table 5, which are taken from the most commonly
used set of parameters for pricing American options under the Heston model in the literature
(Fang and Oosterlee, 2011).

K T r λ η v̄ v0 ρ
10 0.25 0.1 5 0.9 0.16 0.0625 0.1

Table 5: Parameter values of the Heston model for pricing the Bermudan put option.

The numerical results for the Bermudan put option values using the fast Hilbert transform
algorithm for varying number of monitoring time instants N and initial asset price S0 are
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presented in Table 6, while those obtained using the Fourier cosine method in Fang and
Oosterlee (2011) are also listed in brackets for comparison. The convergence of the Bermudan
put option values to the American option values (corresponding to N → ∞) is clearly
observed. The CPU times required in the computation are reported in the last column.

N\S0 8 9 10 11 12 Time (sec)
10 1.98200 1.10287 0.51722 0.21239 0.08153 6.56

(1.98200) (1.10283) (0.51718) (0.21237) (0.08153) (6.91)
20 1.99047 1.10531 0.51872 0.21307 0.081791 7.17

(1.99046) (1.10523) (0.51863) (0.21301) (0.08177) (7.49)
40 1.99488 1.10671 0.51967 0.21355 0.08199 8.42

(1.99486) (1.10655) (0.51948) (0.21342) (0.08192) (8.89)
80 1.99719 1.10760 0.52007 0.21367 0.08200 11.76

(1.99717) (1.10733) (0.52006) (0.21373) (0.08204) (14.05)
American
put value

2.000000 1.107621 0.520030 0.213677 0.082044 NA

Table 6: Comparison of the numerical results for Bermudan put option values obtained from
the fast Hilbert transform algorithm (truncation level parameters: M = 26, J = 27 and
damping factor: α = 5) with those obtained using the Fourier cosine method (shown in
brackets).

Table 6 reveals good numerical performance of the fast Hilbert transform method when
compared with the performance of the Fourier cosine method (known to be a reliable and
accurate method to price Bermudan options under the Heston model). These observations
confirm high level of accuracy and efficiency of the fast Hilbert transform method. Another
advantage of our method is that it is applicable to the general class of time-changed Lévy
processes, not necessarily limited to the Heston model. Note that the numerical performance
of the fast Hilbert transform algorithm depends on the tail behavior of the conditional
moment generating function Ψ∆(−α− iβ; ζj, ζp). For a smaller value of ∆, it decays slower,
so larger value ofM may be required to achieve a given level of tolerance of truncation error.
Therefore, pricing Bermudan options with higher monitoring frequency is computationally
more demanding.

We also explore the dependence of the critical asset prices on time to maturity for varying
values of fixed activity rate v. Figure 3 shows that the critical asset prices decrease when
the time to maturity lengthens and higher activity rate leads to lower critical asset price.
Next, we investigate the dependence of the Bermudan put option value and option delta on
the initial asset price S0 for varying values of the initial activity rate v0. Figure 4 shows
that the Bermudan put option value is an increasing function of the initial activity rate v0.
Figure 5 reveals that the put option delta is an increasing function of S0 and the put option
delta values shows a more moderate rate of change in values at a higher level of v0.

In the next set of sample calculations, we adopt the same set of parameter values of the
Heston model from Table 1. We set K = 100 and T = 0.25 for the Bermudan put option.
Recall that the computational effort in the preparation step with non-equidistant quadrature
rules is dominated by the computation of the matrices Ψ̃(ζp), p = 1, 2, · · · , J , which involve
numerical valuation of the modified Bessel functions. The entries under the column “Init”
in Tables 7 and 8 show the CPU times in the preparation step, which are shown to dominate
the total running CPU time. We use “Loop” to denote the running CPU time for the looping
step in the fast Hilbert transform algorithm and Fourier cosine method. The sum of “Init”
and “Loop” gives the total CPU time. Table 7 lists the results of the numerical tests that
were performed to examine accuracy and efficiency of the fast Hilbert transform algorithm,
while those obtained by the Fourier cosine method are listed in brackets.
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S0 90 100 110 total Init Loop
N = 20 9.97861 3.20410 0.92691 62.2 54.8 7.4

(9.97837) (3.20474) (0.92811) (68.9) (59.3) (10.7)
N = 40 9.99291 3.20719 0.92772 73.1 55.7 17.4

(9.99165) (3.20733) (0.92811) (81.9) (59.3) (22.6)
N = 60 9.99799 3.20856 0.92808 83.0 58.1 24.9

(9.99578) (3.20792) (0.92804) (93.2) (59.4) (33.8)

Table 7: Comparison of the numerical results for the Bermudan put option values obtained
from the fast Hilbert transform algorithm (truncation level parameters: M = 27, J = 28

and damping factor: α = 5) with those obtained using the Fourier cosine method (shown in
brackets).

Lastly, we also consider pricing Bermudan put options under the general time-changed
Lévy processes. Likewise, we take the underlying asset to follow the NIG-CIR process in
our sample calculations using the same set of parameter values from Table 3, except that
T = 0.25. Table 8 lists the numerical results for Bermudan put option values for varying
values of initial asset price S0. Our numerical experiments show that relatively large values
of the truncation level parameters (M = 29 and J = 28) are required in order to achieve
accuracy less than 0.2% in relative percentage error. Since reference values for comparison
are not available in the literature, the numerical results provided in Table 8 may serve
as benchmark values for comparison with numerical results obtained from future pricing
methods.

S0 9 10 11 total Init. Loop
N = 10 0.97768 0.23234 0.05212 234.2 217.9 16.3
N = 20 0.98858 0.23363 0.05239 250.9 218.3 32.6
N = 30 0.99233 0.23406 0.05248 281.6 218.9 62.7

Table 8: Numerical results for Bermudan put option values obtained from the fast Hilbert
transform algorithm (truncation level parameters: M = 29, J = 28 and damping factor:
α = 5) under the NIG-CIR model.

6 Conclusion

We develop and apply the effective fast Hilbert transform algorithms for pricing dividend-
ruin model with default and dividend barrier features and Bermudan options under time-
changed Lévy processes. The renowned Heston model as an affine stochastic volatility model
is nested within the class of time-changed Lévy processes. It is a non-trivial generalization of
the fast Hilbert transform method that has been developed earlier for option pricing under
one-dimensional Lévy processes. Our pricing algorithms under time-changed Lévy processes
are derived by applying the fast Hilbert transform method in the log-asset return dimension
and a quadrature rule in the log-activity rate dimension. The option delta and gamma can
also be obtained with essentially no additional computational effort.

In view of the near-singular behavior of the probability density of the activity rate, a
transformation from the activity rate domain to the log-activity rate domain has been cho-
sen in the construction of the fast Hilbert transform algorithms. The finite time dividend-ruin
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model resembles a path dependent option model with both the lookback and barrier feature,
so it is more complex to be priced compared to the barrier options. Besides incorporating the
knock-out barrier, we also extend the fast Hilbert transform algorithm for pricing discrete op-
tions with reflecting style barrier under the Lévy setting to time-changed Lévy processes. In
fact, we provide a framework of using the fast Hilbert transform method to price any options
with absorbing or reflecting barrier feature and defaultable bonds under time-changed Lévy
processes. We also show how to combine the fast Hilbert transform method and quadrature
rule to price Bermudan options under the framework of time-changed Lévy processes. We
prove the existence of unique critical asset price for determining the optimal exercise decision
in the Bermudan put option under time-changed Lévy processes. We compare the numerical
performance of the fast Hilbert transform algorithm with the Fourier cosine method. The
fast Hilbert transform method is seen to be highly accurate and more efficient compared to
other existing algorithms.

The computational cost of the method is approximatelyO
(
max[A, N log2M ]MJ2

)
, where

N is the number of monitoring instants, andM and J are the truncation level parameters in
the log-asset return dimension and log-activity rate dimension, respectively. High efficiency,
accuracy, reliability and robustness of the fast Hilbert algorithms are demonstrated through
various numerical tests in pricing dividend-ruin models and Bermudan options under the
Heston model and NIG-CIR model. High level of numerical accuracy is observed even under
the scenario where the Feller condition in the CIR process of the activity rate is not satisfied.
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Appendix A. Properties of the CIR process
Consider the CIR process vt as governed by Eq. (2.5), the distribution of vt given vs, t > s,
is a noncentral chi-squared distribution (up to a scale factor). In terms of the following
parameters

ν =
2λv̄

η2
− 1 and ζ =

2λ

[1− e−λ(t−s)]η2
,

the transition law of vt can be expressed as (Cox et al., 1985)

vt =
1

2ζ
χ′2
2(ν+1)[ 2ζe

−λ(t−s)vs ], t > s, (A.1)

where χ′2
2(ν+1)(m) denotes the noncentral chi-squared random variable with 2(ν + 1) degrees

of freedom and noncentrality parameter m. The probability density function of vt given vs,
s < t, can be written as

p(vt|vs) = ζe−ζ[vse
−λ(t−s)+vt]

[
eλ(t−s)vt
vs

] ν
2

Iν

(
2ζe−

1
2
λ(t−s)√vsvt

)
, s < t,

where Iν(·) is the modified Bessel function of the first kind with order ν. The Feller condition
is equivalent to “ν ≥ 0”.

We would like to explain why the transformation from the variance domain to the log-
variance domain leads to computational convenience that resolves the singular behavior when
the CIR model parameters obtained from calibration of real market data fail to satisfy the
Feller condition. Let γt = ln vt, the conditional density of the log-activity rate process γt can
be obtained as follows:

pγ(γt|γs) = ζe−ζ[e
γse−λ(t−s)+eγt ]

[
eγt−γseλ(t−s)

] ν
2 eγtIν

(
2ζe−

1
2
λ(t−s)√eγteγs

)
. (A.2)

The appearance of the term eγt compensates the (·) ν
2 term, so the conditional density of log-

activity rate converges to zero as γt → −∞. Compared to the conditional density of activity
rate, the new form of conditional density demonstrates two main advantages. Firstly, the left
tail of the conditional density of log-activity rate decays to zero rapidly instead of increasing
significantly, though the decay rate may decrease when ν approaches −1. Secondly, the
conditional densities of the log-activity rate processes for different parameter values are
more symmetric than those of the activity rate processes.

Broadie and Kaya (2006) use the Fourier inversion technique to invert the characteristic
function of the time-integrated variance

∫ t
s
vu du to generate a sample for the integral. The

closed form expression for the characteristic function conditional on vt and vs is given by
(Broadie and Kaya, 2006)

Φ(ξ; γt, γs) = E
[
eiξ

∫ t
s vu du|γt, γs

]
=

Iν

(√
eγteγs 4γ̃(ξ)e−

1
2 γ̃(ξ)(t−s)

η2[1−e−γ̃(ξ)(t−s)]

)
Iν

(√
eγteγs 4λe−

1
2λ(t−s)

η2[1−e−λ(t−s)]

) γ̃(ξ)e−
1
2
[γ̃(ξ)−λ](t−s)[1− e−λ(t−s)]

λ [1− e−γ̃(ξ)(t−s)]

exp

(
eγs + eγt

η2

{
λ
[
1 + e−λ(t−s)

]
1− e−λ(t−s)

−
γ̃(ξ)

[
1 + e−γ̃(ξ)(t−s)

]
1− e−γ̃(ξ)(t−s)

})
,

(A.3)

where γ̃(ξ) =
√
λ2 − 2iη2ξ.
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Appendix B. Proof of Proposition 1
We denote Yt = ln St

K
= rt + XTt , and write the joint conditional probability density of

the difference of the log-asset return and log-activity rate as pk(∆kY, γtk+1
|Ytk , γtk), where

∆kY = Ytk+1
− Ytk . Let Ṽ (Stk , γtk , tk) and C̃(Stk , γtk , tk) denote the Bermudan put option

value and continuation value at time tk, respectively. For k = N − 1, N − 2, · · · , 0, we have

C̃(Stk , γtk , tk) = e−r∆Etk [Ṽ (Stk+1
, γtk+1

, tk+1)].

Following a similar approach as in Feng and Lin (2013), we establish the proof of the
proposition by mathematical induction. For k = N − 1, we consider the derivative of
Ṽ (StN−1

, γtN−1
, tN−1) with respect to StN−1

as follows

d

dStN−1

C̃(StN−1
, γtN−1

, tN−1)

=
d

dStN−1

∫ ln K
StN−1

−∞
e−r∆

(
K − StN−1

e∆N−1Y
)
pN−1

(
∆N−1Y |YtN−1

, γtN−1

)
d∆N−1Y

= −e−r∆
K − StN−1

e
ln K

StN−1

StN−1

pN−1

(
ln

K

StN−1

|YtN−1
, γtN−1

)
− e−r∆

∫ ln K
StN−1

−∞
e∆N−1Y pN−1(∆N−1Y |YtN−1

, γtN−1
) d∆N−1Y

> −e−r∆
∫ ∞

−∞
e∆N−1Y pN−1(∆N−1Y |YtN−1

, γtN−1
) d∆N−1Y

= −e−r∆EtN−1

[
e∆N−1Y

]
= −EtN−1

[
e
XTtN

−XTtN−1

]
= −1.

The last equality holds by virtue of the martingale property ofXTt . Since C̃(StN−1
, γtN−1

, tN−1) >
0 for any StN−1

> 0, and

lim
StN−1

→0+
C̃(StN−1

, γtN−1
, tN−1) = Ke−r∆,

there exists unique critical asset price S∗
N−1(γtN−1

) satisfying 0 < S∗
N−1(γtN−1

) < K, such
that

G̃(StN−1
) = C̃(StN−1

, γtN−1
, tN−1).

Once S∗
N−1(γtN−1

) is determined, the Bermudan put option value at tN−1 is given by

Ṽ (StN−1
, γtN−1

, tN−1) = e−r∆EtN−1
[Ṽ (StN , γtN , tN)]1(S∗

N−1(γtN−1
),∞)

+ G̃(StN−1
)1(0,S∗

N−1(γtN−1
)].

Suppose the formula holds for k + 1, where 2 ≤ k + 1 ≤ N − 1, we would like to show
that it is also true for k. Similarly, we consider the derivative of Ṽ (Stk , γtk , tk) with respect
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to Stk as follows

d

dStk
C̃(Stk , γtk , tk)

=
d

dStk

∫ ln
S∗
k+1(γtk+1

)

Stk

−∞

∫ ∞

−∞
e−r∆(K − Stke

∆kY )pk(∆kY, γtk+1
|Ytk , γtk) dγtk+1

d∆kY

+
d

dStk

∫ ∞

ln
S∗
k+1

(γtk+1
)

Stk

∫ ∞

−∞
e−r∆C̃(Stke

∆kY , γtk+1
, tk+1)pk(∆kY, γtk+1

|Ytk , γtk) dγtK+1
d∆kY

= − e−r∆
∫ ∞

−∞

K − S∗
k+1(γtk+1

)

Stk
pk

(
ln
S∗
k+1(γtk+1

)

Stk
, γtk+1

|Ytk , γtk
)
dγtk+1

− e−r∆
∫ ln

S∗
k+1(γtk+1

)

Stk

−∞

∫ ∞

−∞
e∆kY pk(∆kY, γtk+1

|Ytk , γtk) dγtk+1
d∆kY

+ e−r∆
∫ ∞

−∞

C̃
(
S∗
k+1(γtk+1

), γtk+1
, tk+1

)
Stk

pk

(
ln
S∗
k+1(γtk+1

)

Stk
, γtk+1

|Ytk , γtk
)
dγtk+1

+ e−r∆
∫ ∞

ln
S∗
k+1

(γtk+1
)

Stk

∫ ∞

−∞

dC̃(Stke
∆kY , γtk+1

, tk+1)

dStk
e∆kY pk(∆kY, γtk+1

|Ytk , γtk) dγtK+1
d∆kY

≥ − e−r∆
∫ ln

S∗
k+1(γtk+1

)

Stk

−∞

∫ ∞

−∞
e∆kY pk(∆kY, γtk+1

|Ytk , γtk) dγk+1d∆kY

− e−r∆
∫ ∞

ln
S∗
k+1

(γtk+1
)

Stk

∫ ∞

−∞
e∆kY pk(∆kY, γtk+1

|Ytk , γtk) dγk+1d∆kY

= −e−r∆Etk
[
e∆kY

]
= −Etk

[
e
XTtk+1

−XTtk

]
= −1.

In the above deviation, we have used the relation:

K − S∗
k+1(γtk+1

) = C̃
(
S∗
k+1(γtk+1

), γtk+1
, tk+1

)
.

Similarly, since C̃(Stk , γtk , tk) > 0 for any Stk > 0, and limStk
→0+ C̃(Stk , γtk , tk) = Ke−r∆,

there exists a unique critical asset price S∗
k(γtk) satisfying 0 < S∗

k(γtk) < K that solves

C̃(Stk , γtk , tk) = G̃(Stk), so Eq. (4.1) holds. The proof is completed by the mathematical
induction argument.
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Figure 1: Plot of the absolute errors in the numerical calculations of the firm asset value
function using the fast Hilbert transform algorithm against M (truncation level parameter
in the log-asset return dimension). The exponential rate of decay of the pricing errors with
respect to M is revealed.
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Figure 2: Plot of the firm asset value function V (Zt0 , γt0 , t0) against initial firm asset value A0

under the Heston model. The dotted line shows the firm asset value without the embedded
ruin and dividend barrier features. The length of the arrow at a specified value of A0 indicates
the loss in the firm asset value function due to the ruin and dividend barrier features.
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Figure 3: Plots of the critical asset prices against time to maturity of the Bermudan put
option under the Heston model for varying values of fixed activity rate v. We observe lower
critical asset prices at higher level of v. The impact of v on the critical asset prices can be
quite significant for long-lived Bermudan put options.
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Figure 4: Plots of the Bermudan put option values against initial asset price S0 under the
Heston model for varying values of the initial activity rate v0. The Bermudan put option
price is seen to be an increasing function of v0.
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Figure 5: Plots of the Bermudan put option delta against initial asset price S0 under the
Heston model for varying values of the initial activity rate v0.
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