
Solution of the First HKUST Undergraduate Math Competition – Senior Level

1. Note y = f(ex) ⇔ yy = ex ⇔ y ln y = x. Then dx = (ln y + 1)dy. So
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2
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y=e
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∣∣∣
y=e

y=1
=

3e2 − 1
4

.

2. (From linear algebra, the inequalities rank(XY ) ≤ rank(X) and rank(XY Z) ≤ rank(Y ) are useful.)

(Solution 1) Since the first two rows of AB are linearly independent, so 2 ≤ rank(AB) ≤ rank(A) ≤ 2.
Hence rank(AB) = 2.

Next to get BA, we note rank(BA) ≥ rank(A(BA)B) = rank((AB)2). Now

(AB)2 =




8 2 −2
2 5 4
−2 4 5




2

=




72 18 −18
18 45 36
−18 36 45


 = 9AB.

Since BA is a 2 × 2 matrix and rank(9AB) = 2, so rank(BA) = 2. Hence BA is invertible. Finally
(BA)3 = B(ABAB)A = B(AB)2A = 9BABA = 9(BA)2. Cancelling (BA)2, we get BA = 9I.

(Solution 2 due to Lau Lap Ming) Since the first two rows of AB are linearly independent, so 2 ≤
rank(AB) ≤ rank(A) ≤ 2. Then rank(AB) = rank(A) = 2.

Next det(AB − tI) = −t(t − 9)2, so the eigenvalues of AB are 0 and 9. If λ is an eigenvalue of BA
with eigenvector v 6= 0, then AB(Av) = A(BAv) = A(λv) = λAv. Since A is 3 × 2 and of rank 2, A is
injective. Hence, Av 6= 0 and λ is an eigenvalue of AB. This implies the only possible eigenvalues of BA
are 0 or 9. From row operations on the matrix of AB, we see the eigenspace of AB for the eigenvalue 0 is

spanned by




1
−2
2


 and the eigenspace V of AB for the eigenvalue 9 is spanned by




2
1
0


 and




−2
0
1


 .

Restricting to V, AB : V → R2 → V is bijective since AB = 9I on V. So the linear maps B : V → R2

and A : R2 → V must be bijective. In particular, B(V ) = R2. Then for every x ∈ R2, there exists v ∈ V
such that Bv = x. So we have BAx = B(ABv) = B(9v) = 9Bv = 9x. Therefore, BA = 9I.

3. (This is an existence problem with solution to be found among continuous functions on [0, 1]. In a
course on metric spaces, a key theorem on existence problem is the contractive mapping theorem.)

Define T : C[0, 1] → C[0, 1] by (Tf)(x) =
∫ x

0

∫ y

0

1
2 + t2π

dt dy −
∫ 1

0

f(y)
2 + (xy)π

dy. Since C[0, 1] is a

complete metric space with d(f, g) = ‖f − g‖∞ and

|Tf(x) − Tg(x)| =
∣∣∣
∫ 1

0

f(y)
2 + (xy)π

dy −
∫ 1

0

g(y)
2 + (xy)π

dy
∣∣∣ ≤ 1

2
‖f − g‖∞.

By the contractive mapping theorem, there exists f ∈ C[0, 1] such that Tf = f and we are done.

4. (For a binomial coefficient problem, we should think about the binomial expansion of (1+x)n.) Observe

the sum I =
p∑

j=0
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p

j
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j

)
=
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)
is the coefficient of xp in the expansion of

p∑

j=0

(
p

j

)
(1 + x)p+j =

( p∑

j=0

(
p

j

)
(1 + x)j

)
(1 + x)p = (2 + x)p(1 + x)p.
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Expanding (2+x)p(1+x)p, we get I =
p∑

k=0

(
p

k

)(
p

p − k

)
2k. Since p divides

(
p

k

)
for 0 < k < p, we have

I ≡
(

p

0

)(
p

p

)
20 +

(
p

p

)(
p
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)
2p = 2p + 1(mod p2).

5. Note Re
1

n1+it
= Re e− ln n−it ln n =

cos(t ln n)
n

and x + x2 =
(
x +

1
2

)2

− 1
4
≥ −1

4
. Let w = t ln 2. Then
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cos w

2
+

cos(t ln 3)
3

+
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4
+
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+
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+
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8
> 0.

6. There are two solutions to this algebra problems. The first one is by linear algebra techniques. The
second one is by field theory techniques.

(Solution 1 due to Lau Lap Ming) Recall n = [K : F ] is the dimension of K as a vector space over
F. Let v1, v2, · · · , vn be a basis of K over F. We claim it is also a basis of K(ζ) over F (ζ). Then
[K(ζ) : F (ζ)] = n = [K : F ].

Suppose there are c1, c2, . . . , cn ∈ F (ζ) such that c1v1 + c2v2 + · · ·+ cnvn = 0. Now each ci is of the
form pi(ζ)/qi(ζ), where pi and qi are polynomials with coefficients in F and qi(ζ) 6= 0. By taking common
denominators, we may assume all qi(ζ) are equal, say to q(ζ). Let pi(ζ) = ai0 + ai1ζ + · · · + aimζm,
where aij ∈ F and m is the maximum degree of p1, p2, . . . , pn. Then

0 = q(ζ)
n∑

i=1

civi =
n∑

i=1

( m∑

j=0

aijζ
j
)
vi =

m∑

j=0

( n∑

i=1

aijvi

)
ζj .

Since ζ is not a root of nonconstant polynomials over K, we have all
n∑

i=1

aijvi = 0 for j = 0, 1, . . . , m.

By the linear independence of vi in K, we get all aij = 0, which imply all ci = 0. So v1, v2, · · · , vn are
linearly independent in K(ζ).

Next, if b0+b1ζ+· · ·+bkζk ∈ K(ζ) with bi ∈ K = span{v1, v2, . . . , vn}, then write each bi = βi1v1+

βi2v2 + · · ·+βinvn, where βij ∈ F. Then b0 + b1ζ + · · ·+ bkζk =
k∑

i=0

n∑

j=1

βijvjζ
i =

n∑

j=1

( k∑

i=0

βijζ
i
)
vj is in

the span of v1, v2, . . . , vn over F (ζ). The claim is proved.

(Solution 2) Since K is obtained by adjoining finitely many algebraic elements to F, inductively, we may
suppose K = F (α) for some algebraic α ∈ C over F. Let

f(x) = xn + an−1x
n−1 + · · ·+ a0 ∈ F [x]

be the minimal polynomial of α over F. Clearly, f(x) ∈ F (ζ)[x] annihilates α. It is enough to show
f(x) ∈ F (ζ)[x] is also the minimal polynomial of α over F (ζ) because then

[K(ζ) : F (ζ)] = [F (ζ)(α) : F (ζ)] = n = [K : F ].

Suppose g(x)
(∗)
= xm + gm−1(ζ)xm−1 + · · ·+ g0(ζ) ∈ F (ζ)[x] is another polynomial such that g(α) = 0,

where gi(ζ) ∈ F (ζ). Since F ⊆ C, F is an infinite field, one can find u ∈ F such that the product
p(ζ) of the denominators of gi(ζ) ∈ F (ζ) do not annihilate u when ζ is replaced by u. Since p(ζ)(αm +
gm−1(ζ)αm−1 + · · · + g0(ζ)) = 0, the polynomial p(x)(αm + gm−1(x)αm−1 + · · · + g0(x)) is the zero
polynomial in F (α)[x] = K[x]. Since p(u) 6= 0, we get

αm + gm−1(u)αm−1 + · · ·+ g0(u) = 0,

where gi(u) ∈ F. Since f is the minimal polynomial of α over F, this implies m ≥ n. Therefore,
f(x) ∈ F (ζ)[x] is the minimal polynomial of α over F (ζ).
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