Second HKUST Undergraduate Math Competition – Junior Level

April 26, 2014

Directions: This is a three hour test. No calculators are allowed. **For every problem**, **provide complete details of your solution**.

Problem 1. Prove that every real-coefficient polynomial $f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$ on the interval $(-\infty, +\infty)$ is the difference of two polynomials g and h, each of which is increasing, where a function p is increasing means for all real numbers a and b, a < b implies $p(a) \le p(b)$.

Problem 2. Let A, B be invertible $n \times n$ complex matrices. Suppose that $AB = \lambda BA$ for some complex number λ .

- (1) Prove that if v is an eigenvector of A, then so is Bv.
- (2) Prove that λ is a root of unity.

Problem 3. Prove that if y = f(x) satisfies the differential equation

$$\frac{dy}{dx} = \frac{1}{3+2\sin y + x^2}$$

on the interval $(-\infty, +\infty)$, then f(x) must be bounded on the interval $(-\infty, +\infty)$.

Problem 4. Evaluate the following sums showing all details:

$$\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \frac{(-1)^{i+j}(i-j)}{(i-j)^2 - \frac{1}{4}} \quad \text{and} \quad \sum_{j=0}^{\infty} \sum_{i=0}^{\infty} \frac{(-1)^{i+j}(i-j)}{(i-j)^2 - \frac{1}{4}}.$$

Problem 5. For what values of a > 1 is

$$\int_{a}^{a^2} \frac{1}{x} \ln \frac{x-1}{32} \, dx$$

minimum? Here $\ln x$ is the natural logarithmic function.

Problem 6. A 13×13 grid of lights can be controlled according to a series of switches. For any 9×9 or 2×2 square of lights there is a switch that reverses each of those 9^2 or 2^2 lights. Initially, all 13^2 lights are off. Determine whether or not it is possible to achieve every lighting configuration using some combination of switches.