Second HKUST Undergraduate Math Competition – Senior Level

April 26, 2014

Directions: This is a three hour test. No calculators are allowed. **For every problem**, **provide complete details of your solution**.

Problem 1. Prove that every real-coefficient polynomial $f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$ on the interval $(-\infty, +\infty)$ is the difference of two polynomials g and h, each of which is increasing, where a function p is increasing means for all real numbers a and b, a < b implies $p(a) \le p(b)$.

Problem 2. Let \mathbb{N} denote the set of all positive integers. Prove that there exists an uncountable set S of subsets of \mathbb{N} such that if $A, B \in S$, then either $A \subseteq B$ or $B \subseteq A$.

Problem 3. Suppose R is a ring (possibly commutative or non-commutative). If $x, y \in R$ and the element 1 + xy is invertible, then prove that 1 + yx is invertible, too.

Problem 4. Alec tosses a fair coin until he gets a tails. If the first tails is on the k-th toss, he then rolls a fair die k times. The probability that his k rolls form a non-decreasing sequence can be written in the form $a^b - c$, where a, b, c are rationals. Compute this probability.

Problem 5. Let b_1, b_2, b_3, \ldots be a strictly decreasing sequence and the series $\sum_{n=1}^{\infty} b_n$ converges. For x > 0, define f(x) to be the number of *n*'s satisfying $b_n \ge 1/x$. Prove that $\lim_{x \to +\infty} \frac{f(x)}{x} = 0$.

Problem 6. Let $M_n(\mathbb{R})$ be the vector space of all $n \times n$ matrices over the real numbers \mathbb{R} . For $A \in M_n(\mathbb{R})$, let A^t denote the transpose of A. Define a linear operators $T_A : M_n(\mathbb{R}) \to M_n(\mathbb{R})$ by

$$T_A(X) = AXA^t.$$

Let $\operatorname{Tr}(A)$ and $\operatorname{Det}(A)$ denote the trace and determinant of A respectively. Prove that the trace of T_A is $\operatorname{Tr}(A)^2$ and the determinant of T_A is $\operatorname{Det}(A)^{2n}$.

– End of Paper –