Third HKUST Undergraduate Math Competition – Junior Level

April 25, 2015

Directions: This is a three hour test. No calculators are allowed. **For every problem**, **provide complete details of your solution**.

Problem 1. Given the value of $I = \int_0^{+\infty} \frac{\ln x}{1+x^2} dx$ is a number. Find that number.

Problem 2. Let P_n be the number of permutations $x_1, x_2, x_3, \ldots, x_n$ of the integers $1, 2, 3, \ldots, n$ such that

$$1x_1 \le 2x_2 \le 3x_3 \le \dots \le nx_n.$$

- (a) Find the values of P_1, P_2, P_3 and P_4 .
- (b) Find the value of P_{20} .

Problem 3. Let *n* be a positive integer and *A* be an $n \times n$ matrix over complex numbers. If $A^j = 0$ for some positive integer *j*, then prove that $A^n = 0$.

Problem 4. For every positive integer n, let $\langle n \rangle$ be the closest integer to \sqrt{n} . Determine the value of

$$\lim_{n \to \infty} \sum_{j=1}^{n} \frac{2^{\langle j \rangle} + 2^{-\langle j \rangle}}{2^{j}}$$

Problem 5. For all real numbers x and y satisfying y > x > 0, prove that $y^{x^y} > x^{y^x}$.

Problem 6. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a function such that $f, \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ and $\frac{\partial^2 f}{\partial x \partial y}$ are continuous and each of them at every point of \mathbb{R}^2 is not zero. If $f \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial f}{\partial x} \frac{\partial f}{\partial y}$ at all points in \mathbb{R}^2 , then prove that there exist functions $g, h : \mathbb{R} \to \mathbb{R}$ such that f(x, y) = g(x)h(y) at every $(x, y) \in \mathbb{R}^2$.