Solution of the Third HKUST Undergraduate Math Competition – Junior Level

1. Let
$$x = \frac{1}{y}$$
, then $I = \int_0^{+\infty} \frac{\ln x}{1+x^2} dx = \int_{+\infty}^0 \frac{\ln(1/y)}{1+(1/y)^2} \left(-\frac{dy}{y^2}\right) = -\int_0^\infty \frac{\ln y}{1+y^2} dy = -I$. So $I = 0$.

<u>*Remark.*</u> A number of students used different substitutions, like $x = \tan \theta$ followed by $\phi = \frac{\pi}{2} - \theta$.

2. (a) Let's refer to the condition $1x_1 \leq 2x_2 \leq 2x_3 \leq \cdots \leq nx_n$ as (*). For n = 1, $(x_1) = (1)$ satisfies (*) and so $P_1 = 1$. For n = 2, $(x_1, x_2) = (1, 2)$, (2, 1) satisfy (*) and so $P_2 = 2$. For n = 3, only $(x_1, x_2, x_3) = (1, 2, 3)$, (1, 3, 2), (2, 1, 3) satisfy (*) and so $P_3 = 3$. For n = 4, only $(x_1, x_2, x_3, x_4) = (1, 2, 3, 4)$, (1, 3, 2, 4), (1, 3, 2, 4), (1, 2, 4, 3), (2, 1, 4, 3) satisfy (*) and so $P_4 = 5$.

(b) Observe that in the cases n = 1 to 4, n is either x_n or x_{n-1} . We claim this is true for n > 4. If $x_n = n$, then we can get the P_{n-1} permutations of $1, 2, \ldots, n-1$ from the case n-1 and add $x_n = n$ to the end of these permutations for case n. Also, if $x_{n-1} = n$, then we can get the P_{n-2} permutations of $1, 2, \ldots, n-2$ from the case n-2 and add $x_{n-1} = n$, $x_n = n-1$ to the end of these permutations for case n. So $P_n \ge P_{n-1} + P_{n-2}$.

Next assume $n = x_{n-k}$ for some k = 2, ..., n-1. Then at least one of the k numbers $x_{n-k+1}, ..., x_n$ is less than or equal to n-k. Say for some $x_{n-j} \in \{x_{n-k+1}, ..., x_n\}$, we have $x_{n-j} \leq n-k$. Then $(n-k)n = (n-k)x_{n-k} \leq (n-j)x_{n-j} \leq (n-j)(n-k)$. This implies j = 0, i.e. $x_n = n-k$. Then $ix_i = (n-k)n$ for i = n-k, ..., n. In particular, $(n-1)x_{n-1} = (n-k)n$. Since n and n-1 are divisors of (n-k)n and gcd(n, n-1) = 1. So n(n-1) is a divisor of (n-k)n, which is less than n(n-1) due to $k \geq 2$. This is a contradiction.

Therefore, $P_n = P_{n-1} + P_{n-2}$. Using $P_3 = 3, P_4 = 5$, we can compute P_5, P_6, P_7, \ldots , then finally $P_{20} = 10946$.

3. (Solution 1) Let $L : \mathbb{C}^n \to C^n$ be given by L(x) = Ax. Let m be the smallest positive integer such that $\ker L^m = \ker L^{m+1}$. From $L^j = 0$, we get $m \leq j$. Since

$$0 \subset \ker L \subset \ker L^2 \subset \cdots \subset \ker L^m \subseteq \mathbb{C}^n,$$

we have $m \leq n$. Next for every $k \geq m$, if $x \in \ker L^{k+1}$, then $L^{k+1}(x) = 0$ and $L^{k-m}(x) \in \ker L^{m+1} = \ker L^m$. Hence, $L^k(x) = L^m \circ L^{k-m}(x) = 0$. Thus, $\ker L^{k+1} = \ker L^k$ for every $k \geq m$. Since $n, j \geq m$, $\ker L^n = \ker L^j = \ker L^m$. Since $\ker L^j = \ker 0 = \mathbb{C}^n$, so $\ker L^n = \mathbb{C}^n$ and $A^n = 0$.

<u>Remark.</u> In place of kernels, ZHU Songhao considered the ranges of A^k and came up with essentially the same proof.

(Solution 2) Let c be an eigenvalue of A with nonzero eigenvector x. Then Ax = cx implies $0 = A^{j}x = c^{j}x$. So c = 0. Then the characteristic polynomial of A is $p(t) = t^{n}$. By the Cayley-Hamilton theorem, we have $A^{n} = p(A) = 0$.

4. Since $(k - \frac{1}{2})^2 = k^2 - k + \frac{1}{4}$ and $(k + \frac{1}{2})^2 = k^2 + k + \frac{1}{4}$, it follows that $\langle n \rangle = k$ if and only if $k^2 - k + 1 \le n \le k^2 + k$. Hence

$$\lim_{n \to \infty} \sum_{j=1}^{n} \frac{2^{\langle j \rangle} + 2^{-\langle j \rangle}}{2^{j}} = \sum_{k=1}^{\infty} \sum_{\langle j \rangle = k} \frac{2^{\langle j \rangle} + 2^{-\langle j \rangle}}{2^{j}} = \sum_{k=1}^{\infty} \sum_{n=k^{2}-k+1}^{k^{2}+k} \frac{2^{k} + 2^{-k}}{2^{n}}$$
$$= \sum_{k=1}^{\infty} (2^{k} + 2^{-k})(2^{-k^{2}+k} - 2^{-k^{2}-k}) = \sum_{k=1}^{\infty} (2^{-k(k-2)} - 2^{-k(k+2)})$$
$$= \sum_{k=1}^{\infty} 2^{-k(k-2)} - \sum_{k=3}^{\infty} 2^{-k(k-2)} = 3.$$

5. Since $\ln x$ is strictly increasing, it is the same as proving $x^y \ln y - y^x \ln x > 0$.

<u>Case 1</u> $(x^y \ge y^x)$ Then y > 1 (otherwise $0 < x < y \le 1$ implies $x^y < x^x < y^x$, which is a contradiction) and $x^y \ln y > y^x \ln x$.

<u>Case 2</u> $(x^y < y^x)$ Either 0 < x < 1 or $x \ge 1$. If 0 < x < 1, then $x^y \ln y - y^x \ln x > x^y \ln x - y^x \ln x = (x^y - y^x) \ln x > 0$. If $x \ge 1$, then y > 1 and $y \ln x < x \ln y$. Hence

$$x^{y}\ln y - y^{x}\ln x > x^{y-1}y\ln x - y^{x}\ln x = \underbrace{\frac{\ln x}{x}}_{\geq 0}(yx^{y} - xy^{x}) \ge 0.$$

Next $yx^y - yxy^x \ge 0$ iff $\ln(yx^y) \ge \ln(xy^x)$ iff $\ln y + y \ln x - \ln x - x \ln y \ge 0$. Now fix x. Let $f(w) = \ln w + w \ln x - \ln x - x \ln w$. Then f(x) = 0. If y > x, then

$$f'(y) = \frac{1}{y} + \ln x - \frac{x}{y} = \ln x - \frac{x-1}{y} > \ln x - \frac{x-1}{x} = \frac{1}{x} \int_{1}^{x} \ln t \, dt \ge 0.$$

Then $f(y) \ge f(x) = 0$. Therefore, $x^y \ln y - y^x \ln x > 0$.

6. We have $f_{xy}/f_x = f_y/f$. Integrating with respect to y, we get $\ln |f_x| = \ln |f| + \alpha(x)$ for some function $\alpha(x)$. Then $\ln |f_x/f| = \alpha(x)$. Let $\beta(x) = f_x/f$. By continuity, either $\beta(x) = e^{\alpha(x)}$ or $\beta(x) = -e^{\alpha(x)}$. Then

$$\ln|f| = \int \beta(x)dx + \gamma(y) = \delta(x) + \gamma(y).$$

By continuity, either $f(x,y) = e^{\delta(x) + \gamma(y)}$ or $f(x,y) = -e^{\delta(x) + \gamma(y)}$. The result follows.