Third HKUST Undergraduate Math Competition – Senior Level

April 25, 2015

Directions: This is a three hour test. No calculators are allowed. **For every problem**, **provide complete details of your solution**.

Problem 1. A point (x, y) in the coordinate plane is called a <u>lattice</u> point if both coordinates x and y are integers. Prove that no three lattice points in the plane are the vertices of an equilateral triangle.

Problem 2. For every real number *a*, define $x_1 = a$ and $x_{n+1} = f(x_n)$ for n = 1, 2, 3, ..., where $f(x) = 1 + \frac{x^2}{1+x^2}$. Determine the set of all real numbers *a* such that the sequence $x_1, x_2, x_3, ...$ defined above is convergent.

Problem 3. Let A be a $n \times n$ positive definite matrix over \mathbb{R} . Prove that there exists a $n \times n$ symmetric matrix B such that $A = B^2$. Let C and D be $n \times n$ positive definite matrices. Prove that all the eigenvalues of CD are real and positive.

Problem 4. Let a and b be positive integers such that for every positive integer n, $b^n + n$ is divisible by $a^n + n$. Prove that a = b.

Problem 5. Let $f : \mathbb{R} \to (0, +\infty)$ be continuous and $\int_{-\infty}^{+\infty} f(x) dx = 1$. Let $0 < \alpha < 1$. If [a, b] is an interval of *minimal length* such that $\int_{a}^{b} f(x) dx = \alpha$, then prove that f(a) = f(b).

Problem 6. Let $D = \{z \in \mathbb{C} : |z| < 1\}$. Let $f : D \to D$ be analytic (or holomorphic) and satisfy f(0) = 0. If there exists a real number $r \in (0, 1)$ such that f(r) = f(-r) = 0, then prove that for all $z \in D$,

$$|f(z)| \le |z| \Big| \frac{z^2 - r^2}{1 - r^2 z^2} \Big|.$$

– End of Paper –