
Solution of the Third HKUST Undergraduate Math Competition – Senior Level

1. (Solution 1 is a common proof involving
√

3) Assume A, B, C are lattice points and also the vertices
of an equilateral triangle. By translation, we may assume A = (x0, y0), B = (x1, y1), C = (0, 0).
Let r =

√
x2

0 + y2
0 =

√
x2

1 + y2
1 . Interchanging the names of A and B if necssary, we may suppose

x0 = r cos θ, y0 = r sin θ and

x1 = r cos(θ + π/3) = (x0 − y0

√
3)/2 and y1 = r sin(θ + π/3) = (y0 + x0

√
3)/2.

One of x0 or y0 is nonzero. If x0 6= 0, then (2y1 −y0)/x0 =
√

3, which is a contradiction. If y0 6= 0, then
(x0 − 2x1)/y0 =

√
3, which is also a contradiction.

(Solution 2 is a proof without any
√

3 due to HUANG Yifeng) If A, B, C are lattice points that are
vertices of an equilateral triangle, then we may assume C = (0, 0) without loss of generality (just
replace A, B by A − C, B − C). Then we have ‖A‖ = ‖B‖ and

A ·B
‖A‖‖B‖ = cos 60◦ =

1
2
.

So 2A · B = ‖A‖2 = ‖B‖2. Let A = (x1, y1) and B = (x2, y2). Removing common factor in Z, we may
assume gcd(x1, y1, x2, y2) = 1.

Now we claim all x1, y1, x2, y2 are odd. If one is even, say x1, then x2
1+y2

1 = 2(x1x2+y1y2) = x2
2+y2

2

implies y1 is even. So x2
1 + y2

1 = x2
2 + y2

2 is divisible by 4. Hence, x2, y2 are even because otherwise
x2

2 + y2
2 ≡ 1 or 2 (mod 4). This contradicts gcd(x1, y1, x2, y2) = 1, which establishes the claim. Then

2(x1x2 + y1y2) ≡ 2(1 + 1) ≡ 0(mod 4), contradicting x2
1 + y2

1 ≡ 1 + 1 = 2(mod 4).

2. (Solution 1) If x1, x2, x3, . . . converges to x, then x = lim
n→∞

xn+1 = lim
n→∞

f(xn) = f(x). Now x = f(x)

if and only if x3 − 2x2 + x − 1 = 0. Using calculus, we can study the graph of the function p(x) =
x3 − 2x2 + x − 1. We can see p(x) has exactly one real root r, which is in the interval (1, 2).

Now for every x1 = a ∈ R, xn ∈ f(R) = [1, 2) for n = 2, 3, 4, . . .. Observe that on [1, 2), we have
x ≤ f(x) iff x(1+x2) ≤ 1+2x2 iff p(x) ≤ 0 iff x ≤ r. Also, since f ′(x) = 2x/(1+x2)2 > 0 on [1, 2), x ≤ r
implies f(x) ≤ f(r) = r. If x2 < r, then x2, x3, x4, . . . is increasing and bounded above by r. Similarly,
if x2 ≥ r, then x2, x3, x4, . . . is decreasing and bounded below by r. Hence, x1, x2, x3, . . . converges to
some x ∈ [1, 2]. By the last paragraph, x = r for every a ∈ R.

(Solution 2 based on the work of PANG Lok Wing) The function f : [1, 2] → [1, 2] with f(x)=1 +
x2

1 + x2

is a contractive mapping because

|f(x) − f(y)| =
∣∣∣ x2

1 + x2
− y2

1 + y2

∣∣∣ =
∣∣∣ (x + y)(x − y)
1 + x2 + y2 + x2y2

∣∣∣ ≤ M |x− y|,

where M = max
{ x + y

1 + x2 + y2 + x2y2
: (x, y) ∈ [1, 2]× [1, 2]

}
=

x0 + y0

1 + x2
0 + y2

0 + x2
0y

2
0

< 1 for some (x0, y0)

in [1, 2]× [1, 2]. By the contractive mapping theorem, f has a unique fixed point r and every sequence
x1, x2, x3, . . . satisfying x1 = a ∈ R, x2 ∈ [1, 2] and xn+1 = f(xn) converges to r.

3. Since A is positive definite, there exists an orthogonal matrix U such that A = UEU−1, where E =
diag(d1, d2, . . . , dn) is a diagonal matrix with all di’s positive. Take B = U diag(

√
d1,

√
d2, . . . ,

√
dn)U−1.

Then B is symmetric and A = B2.

For C and D, by the last paragraph, C = F 2 for some symmetric matrix F and CD = F 2D =
F (FDF )F−1. So CD and FDF have the same eigenvalues. However, FDF is positive definite, since for
every x ∈ Rn \ {0}, xT FDFx = (Fx)TD(Fx) > 0. So all the eigenvalues of FDF are real and positive.



4. Clearly a ≤ b. Assume a < b. let p be a prime number greater than b. Let n = (a + 1)(p − 1) + 1.
By Fermat’s little theorem, an ≡ a(mod p) and bn ≡ b(mod p). Now n ≡ −a(mod p). Then an + n ≡
a + n ≡ 0(mod p). So bn + n ≡ 0(mod p). However, bn + n ≡ b − a(mod p) and 0 < b − a < b < p,
contradiction. So a = b.

5. Let F (y) =
∫ y+b−a

y

f(x) dx. Then F (a) = α. By the fundamental theorem of calculus, F ′(a) = f(b) −

f(a). It suffices to show F ′(a) = 0. Since f is continuous and nonnegative on R, F (y) is continuous,
nonnegative and tends to 0 as y → ±∞. So F (y) must attain a maximum value at some point.

Assume F (a) is not the maximum value of F. Then there exists y0 such that F (y0) > F (a). Let

G(y) =
∫ y

y0

f(x) dx. Then G(y0) = 0 and G(y0 + b − a) = F (y0) > F (a). Since f is continuous, so is G.

The intermediate value theorem implies that for some y1 ∈ (y0, y0 + b− a), we have G(y1) = F (a) = α.
Since [y0, y1] has shorter length than [a, b], this contradicts the condition that [a, b] is an interval of

minimal length such that
∫ a

b

f(x) = α. Therefore, F (a) is the maximum value of F and f(b) − f(a) =

F ′(a) = 0.

6. By Schwarz’ lemma, f1(z) = f(z)/z satisfies |f1(z)| ≤ 1 for all z ∈ D. The function g(z) = (z−r)/(1−rz)

is a bijective analytic map from D to D. Applying Schwarz’ lemma to f2(z) = f1

( z − r

1 − rz

)
, we see

that f3(z) = f1(z)/
( z + r

1 + rz

)
satisfy |f3(z)| ≤ 1 for all z ∈ D. Similarly, applying Schwarz’ lemma to

f4(z) = f3

( z + r

1 + rz

)
, we see that f5(z) = f3(z)/

( z − r

1 − rz

)
satisfy |f5(z)| ≤ 1 for all z ∈ D. Then

|f(z)| ≤ |z|
∣∣∣ z − r

1 − rz

∣∣∣
∣∣∣ z + r

1 + rz

∣∣∣|f5(z)| ≤ |z|
∣∣∣ z − r

1 − rz

∣∣∣
∣∣∣ z + r

1 + rz

∣∣∣.


