Solution of the Third HKUST Undergraduate Math Competition – Senior Level

1. (Solution 1 is a common proof involving $\sqrt{3}$) Assume A, B, C are lattice points and also the vertices of an equilateral triangle. By translation, we may assume $A = (x_0, y_0), B = (x_1, y_1), C = (0, 0)$. Let $r = \sqrt{x_0^2 + y_0^2} = \sqrt{x_1^2 + y_1^2}$. Interchanging the names of A and B if necessary, we may suppose $x_0 = r \cos \theta, y_0 = r \sin \theta$ and

$$x_1 = r\cos(\theta + \pi/3) = (x_0 - y_0\sqrt{3})/2$$
 and $y_1 = r\sin(\theta + \pi/3) = (y_0 + x_0\sqrt{3})/2.$

One of x_0 or y_0 is nonzero. If $x_0 \neq 0$, then $(2y_1 - y_0)/x_0 = \sqrt{3}$, which is a contradiction. If $y_0 \neq 0$, then $(x_0 - 2x_1)/y_0 = \sqrt{3}$, which is also a contradiction.

(Solution 2 is a proof without any $\sqrt{3}$ due to HUANG Yifeng) If A, B, C are lattice points that are vertices of an equilateral triangle, then we may assume C = (0,0) without loss of generality (just replace A, B by A - C, B - C). Then we have ||A|| = ||B|| and

$$\frac{A \cdot B}{\|A\| \|B\|} = \cos 60^{\circ} = \frac{1}{2}.$$

So $2A \cdot B = ||A||^2 = ||B||^2$. Let $A = (x_1, y_1)$ and $B = (x_2, y_2)$. Removing common factor in \mathbb{Z} , we may assume $gcd(x_1, y_1, x_2, y_2) = 1$.

Now we claim all x_1, y_1, x_2, y_2 are odd. If one is even, say x_1 , then $x_1^2 + y_1^2 = 2(x_1x_2 + y_1y_2) = x_2^2 + y_2^2$ implies y_1 is even. So $x_1^2 + y_1^2 = x_2^2 + y_2^2$ is divisible by 4. Hence, x_2, y_2 are even because otherwise $x_2^2 + y_2^2 \equiv 1$ or 2 (mod 4). This contradicts $gcd(x_1, y_1, x_2, y_2) = 1$, which establishes the claim. Then $2(x_1x_2 + y_1y_2) \equiv 2(1+1) \equiv 0 \pmod{4}$, contradicting $x_1^2 + y_1^2 \equiv 1 + 1 = 2 \pmod{4}$.

2. (Solution 1) If x_1, x_2, x_3, \ldots converges to x, then $x = \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} f(x_n) = f(x)$. Now x = f(x) if and only if $x^3 - 2x^2 + x - 1 = 0$. Using calculus, we can study the graph of the function $p(x) = x^3 - 2x^2 + x - 1$. We can see p(x) has exactly one real root r, which is in the interval (1, 2).

Now for every $x_1 = a \in \mathbb{R}$, $x_n \in f(\mathbb{R}) = [1, 2)$ for $n = 2, 3, 4, \ldots$ Observe that on [1, 2), we have $x \leq f(x)$ iff $x(1+x^2) \leq 1+2x^2$ iff $p(x) \leq 0$ iff $x \leq r$. Also, since $f'(x) = 2x/(1+x^2)^2 > 0$ on $[1, 2), x \leq r$ implies $f(x) \leq f(r) = r$. If $x_2 < r$, then x_2, x_3, x_4, \ldots is increasing and bounded above by r. Similarly, if $x_2 \geq r$, then x_2, x_3, x_4, \ldots is decreasing and bounded below by r. Hence, x_1, x_2, x_3, \ldots converges to some $x \in [1, 2]$. By the last paragraph, x = r for every $a \in \mathbb{R}$.

(Solution 2 based on the work of PANG Lok Wing) The function $f: [1,2] \rightarrow [1,2]$ with $f(x)=1+\frac{x^2}{1+x^2}$ is a contractive mapping because

$$|f(x) - f(y)| = \left|\frac{x^2}{1 + x^2} - \frac{y^2}{1 + y^2}\right| = \left|\frac{(x + y)(x - y)}{1 + x^2 + y^2 + x^2y^2}\right| \le M|x - y|$$

where $M = \max\left\{\frac{x+y}{1+x^2+y^2+x^2y^2} : (x,y) \in [1,2] \times [1,2]\right\} = \frac{x_0+y_0}{1+x_0^2+y_0^2+x_0^2y_0^2} < 1$ for some (x_0,y_0) in $[1,2] \times [1,2]$. By the contractive mapping theorem, f has a unique fixed point r and every sequence x_1, x_2, x_3, \ldots satisfying $x_1 = a \in \mathbb{R}, x_2 \in [1,2]$ and $x_{n+1} = f(x_n)$ converges to r.

3. Since A is positive definite, there exists an orthogonal matrix U such that $A = UEU^{-1}$, where $E = \text{diag}(d_1, d_2, \ldots, d_n)$ is a diagonal matrix with all d_i 's positive. Take $B = U \text{diag}(\sqrt{d_1}, \sqrt{d_2}, \ldots, \sqrt{d_n})U^{-1}$. Then B is symmetric and $A = B^2$.

For C and D, by the last paragraph, $C = F^2$ for some symmetric matrix F and $CD = F^2D = F(FDF)F^{-1}$. So CD and FDF have the same eigenvalues. However, FDF is positive definite, since for every $x \in \mathbb{R}^n \setminus \{0\}, x^T FDFx = (Fx)^T D(Fx) > 0$. So all the eigenvalues of FDF are real and positive.

4. Clearly $a \leq b$. Assume a < b. let p be a prime number greater than b. Let n = (a + 1)(p - 1) + 1. By Fermat's little theorem, $a^n \equiv a \pmod{p}$ and $b^n \equiv b \pmod{p}$. Now $n \equiv -a \pmod{p}$. Then $a^n + n \equiv a + n \equiv 0 \pmod{p}$. So $b^n + n \equiv 0 \pmod{p}$. However, $b^n + n \equiv b - a \pmod{p}$ and 0 < b - a < b < p, contradiction. So a = b.

5. Let $F(y) = \int_{y}^{y+b-a} f(x) dx$. Then $F(a) = \alpha$. By the fundamental theorem of calculus, F'(a) = f(b) - f(a). It suffices to show F'(a) = 0. Since f is continuous and nonnegative on \mathbb{R} , F(y) is continuous, nonnegative and tends to 0 as $y \to \pm \infty$. So F(y) must attain a maximum value at some point.

Assume F(a) is not the maximum value of F. Then there exists y_0 such that $F(y_0) > F(a)$. Let $G(y) = \int_{y_0}^{y} f(x) \, dx$. Then $G(y_0) = 0$ and $G(y_0 + b - a) = F(y_0) > F(a)$. Since f is continuous, so is G. The intermediate value theorem implies that for some $y_1 \in (y_0, y_0 + b - a)$, we have $G(y_1) = F(a) = \alpha$. Since $[y_0, y_1]$ has shorter length than [a, b], this contradicts the condition that [a, b] is an interval of minimal length such that $\int_{b}^{a} f(x) = \alpha$. Therefore, F(a) is the maximum value of F and f(b) - f(a) = F'(a) = 0.

6. By Schwarz' lemma, $f_1(z) = f(z)/z$ satisfies $|f_1(z)| \le 1$ for all $z \in D$. The function g(z) = (z-r)/(1-rz)is a bijective analytic map from D to D. Applying Schwarz' lemma to $f_2(z) = f_1\left(\frac{z-r}{1-rz}\right)$, we see that $f_3(z) = f_1(z)/\left(\frac{z+r}{1+rz}\right)$ satisfy $|f_3(z)| \le 1$ for all $z \in D$. Similarly, applying Schwarz' lemma to $f_4(z) = f_3\left(\frac{z+r}{1+rz}\right)$, we see that $f_5(z) = f_3(z)/\left(\frac{z-r}{1-rz}\right)$ satisfy $|f_5(z)| \le 1$ for all $z \in D$. Then $|f(z)| \le |z| \left|\frac{z-r}{1-rz}\right| \left|\frac{z+r}{1+rz}\right| |f_5(z)| \le |z| \left|\frac{z-r}{1-rz}\right| \left|\frac{z+r}{1+rz}\right|.$