
Solution of the Fourth HKUST Undergraduate Math Competition – Junior Level

1. (a) Note that the solutions (x, y) with x 6= y come in pairs since (x, y) is a solution if and only if (y, x)
is a solution. Thus, there are an even number of such solutions. On the other hand, there is exactly one
solution with x = y, namely x = 2n. Therefore the total number of solutions, f(n), is odd.

(b) Rewrite the equation n(x + y) = xy as (*) (x − n)(y − n) = n2. The two factors x − n and y − n
must be either both positive or both negative. In the latter case, we have 1 ≤ x < n and 1 ≤ y < n, so
(x − n)(y − n) = (n − x)(n − y) < n2, which contradicts (*). Thus we necessarily have x − n ≥ 1 and
y − n ≥ 1. Setting a = x − n and b = y − n, the number, f(n), of solutions to (*) is seen to be equal
to the number representations n2 = ab with 1 ≤ a, b ≤ n2. But the latter is equal to the number of
divisors of n2. In particular, since 22n has exactly 2n + 1 positive divisors (namely, 20, 21, . . . , 22n), we
have f(2n) = 2n + 1.

2. Let y = 1. Then xf(x) = 3x+g(x), where g(x) =
∫ x

1
f(t) dt. Then xg′(x)−g(x) = 3x and g′(1) = 3. Using

integrating factor 1/x2, we have (g(x)/x)′ = 3/x. Then g(x) = x(3 lnx+C). So f(x) = g′(x) = 3 lnx+3.
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which goes to 0 as N → ∞. Hence the partial sums converge to the value 2 as N → ∞.

4. By Taylor’s theorem, for all x ∈ [0, 1],
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5. A(A+B)−1B = A(A+B)−1[(A+B)−A] = A(A+B)−1(A+B)−A(A+B)−1A = A−A(A+B)−1A =
A − [(A + B) − B](A + B)−1A = A − A + B(A + B)−1A = B(A + B)−1A.

6. The case r = 0 is clear. For r 6= 0, let n be the degree of p(z) and x1 < x2 < · · · < xk be the roots of p(z)
with multiplicities m1, m2, . . . , mk, respectively. If any mj exceeds 1, then p(z)− rp′(z) has a root at xj

with multiplicities mj − 1 (giving a total of n − k roots all together). We have p(z) = c(z − xk1)m1 (z −

xk2)m2 · · · (z − xkk)mk . Then
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the intermediate value theorem, there exists wj ∈ (xj, xj+1) such that p′(wj)/p(wj) = 1/r, Then the
wj’s are also roots of p(z) − rp′(z). The xj’s and wj’s account for (n − k) + (k − 1) = n − 1 roots of
p(z) − rp′(z). The last root must also be real as nonreal complex roots come in conjugate pairs. So
p(z) − rp′(z) has only real roots.


