Solution of the Fourth HKUST Undergraduate Math Competition — Junior Level

. (a) Note that the solutions (z,y) with  # y come in pairs since (z,y) is a solution if and only if (y, )
is a solution. Thus, there are an even number of such solutions. On the other hand, there is exactly one
solution with & = y, namely x = 2n. Therefore the total number of solutions, f(n), is odd.

(b) Rewrite the equation n(x +y) = zy as (*) (x —n)(y —n) = n?. The two factors z —n and y — n
must be either both positive or both negative. In the latter case, we have 1 <z <nand 1 <y < mn, so
(x —n)(y —n) = (n —x)(n —y) < n?, which contradicts (*). Thus we necessarily have z — n > 1 and
y—mn > 1. Setting a = x —n and b = y — n, the number, f(n), of solutions to (*) is seen to be equal
to the number representations n? = ab with 1 < a,b < n%. But the latter is equal to the number of

divisors of n2. In particular, since 22" has exactly 2n + 1 positive divisors (namely, 29,21, ..., 22") we
have f(2") = 2n+ 1.
. Let y = 1. Then z f (x) = 3z+g(x), where g(z) = [} f(t) dt. Then z¢'(z)—g(z) = 3z and ¢’ (1) = 3. Using

integrating factor 1/x2, we have (g(z)/x) = 3/x Then g( )=2BInz+C).So f(z) =¢'(z) = 3Inz+3.

. For any positive integer N we have
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which goes to 0 as N — oco. Hence the partial sums converge to the value 2 as N — oc.

. By Taylor’s theorem, for all z € [0, 1],
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Since 22 € [0,1], we have f(z®) < f(= )+f(%)($2—%).80

/Olf(xz) dx < f(%) +f’(%) /01(3;2 _ §) dr = f(g).
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. The case r = 0 is clear. For r # 0, let n be the degree of p(z) and 21 < x3 < - - < x}, be the roots of p(z)
with multiplicities mq, mao, ..., my, respectively. If any m; exceeds 1, then p(z) —rp’(z) has a root at z;
with multiplicities m; — 1 (giving a total of n — k roots all together). We have p(z) = c¢(z — x,)"* (2 —
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the intermediate value theorem, there exists w; € (z;, z;41) such that p’(w;)/p(w;) = 1/r, Then the
w;’s are also roots of p(z) — rp/(z). The z;’s and w;’s account for (n — k) + (k — 1) = n — 1 roots of
p(z) — rp’(z). The last root must also be real as nonreal complex roots come in conjugate pairs. So
p(z) — rp’(z) has only real roots.



