
Solution of the Fourth HKUST Undergraduate Math Competition – Senior Level

1. Assume there exists a linear dependent relation a1vn1 + · · ·+ akvnk = 0 with all ai 6= 0 and k minimal.
Note k > 1. We have a1λn1vn1 + · · · + akλnkvnk = T (a1vn1 + · · · + akvnk) = 0. Since k > 1, not all
λni = 0, say λnk 6= 0. Then a1(λnk −λn1)vn1 + · · ·+a1(λnk −λnk−1 )vnk−1 = 0 with all ai(λnk −λni ) 6= 0
(i = 1, . . . , k − 1). This contradicts the minimality of k. So v1, . . . , vn are linearly independent.

Next, let V be the vector subspace spanned by sin(c1x), . . . , sin(cnx) in the set of all functions from
R to R. Let T be the linear transformation d2/dx2. Then the −c2

i ’s are distinct eigenvalues of T with
distinct sin(cix) as eigenvectors. By the first part of the problem, sin(c1x), . . . , sin(cnx) are linearly
independent.

2. Let f(n) denote the above sum. For convenience we define A(∅) = 0 and include the empty set in the
above summation. We will show that (*) f(n) = n2n−1.

For n = 1, the sum reduces to A({1}) = 1, which proves (*) in this case. Now assume n ≥ 2. The
subsets S ⊆ {1, 2, . . . , n} are either of the form S = S′, where S′ ⊆ {1, 2, . . ., n − 1}, or of the form
S′ ∪ {n}, where S′ ⊆ {1, 2, . . . , n − 1}. In the latter case, we have A(S) = A(S′ ∪ {n}) = n − A(S′).
Hence,

f(n) =
∑

S′⊆{1,2,...,n−1}

A(S′) +
∑

S′⊆{1,2,...,n−1}

(n − A(S′)) =
∑

S′⊆{1,2,...,n−1}

n = n2n−1,

since there are 2n−1 subsets S′ of {1, 2, . . . , n− 1}. This proves (*) for n ≥ 2.

3. (1) Let g =
(

a b
c d

)
. We have g · i =

ai + b

ci + d
= i iff ai+b = (ci+d)i iff a = d, b = −c iff g =

(
a b
−b a

)
.

Since det g = 1, so a2 + b2 = 1. So g has the form
(

cos θ sin θ
− sin θ cos θ

)
. For z ∈ H, we write z = b + ai,

b ∈ R, a > 0, then (
a1/2 a−1/2b
0 a−1/2

)
· i = b + ai = z.

(2) From (1), we may assume that z = i. If i and w are on the upper imaginary axis, then take g to

be the identity matrix I. Otherwise, Re w 6= 0. We claim we can find g =
(

cos θ sin θ
− sin θ cos θ

)
6= −I such

that g ·w is on the upper imaginary axis. Then g · i = i and g ·w are both on the upper imaginary axis.
Observe

Re g · w = Re(
cos θw + sin θ

− sin θw + cos θ
) =

(− tan2 θRe w + tan θ(1 − |w|2) + Re w) cos2 θ

| 1− sin θw + cos θ︸ ︷︷ ︸
6=0 as w∈H, g 6=−I

|2
.

Now the equation −x2Re w+x(1−|w|2)+Re w = 0 has a nonzero real root x = α since the discriminant
is (1 − |w|2)2 + 4(Re w)2 ≥ 0. Then we take θ so that tan θ = α.

4. Consider the 3n n-tuples where each of the n coordinates is filled with a letter L, R or N. Each n-tuple
with at least one L and at least one R corresponds to an ordered pair (A, B), where A is consisted of
those j such that the j-th coordinate is L and B is consisted of those k such that the k-th coordinate
is R.

Then there are 2n−1 n-tuples having only N or R in the coordinates with at least one R. Similarly,
there are 2n − 1 n-tuples having only N or L in the coordinates with at least one L. The last n-tuple
has N in all coordinates. These n-tuples do not form any (A, B) ∈ Yn. So the number of elements in Yn

is 3n − 2(2n − 1) − 1 = 3n − 2n+1 + 1.



5. From the power series of ew, we have f(z) = ez(z−1)2 . Observe that f ′(z) = ez(z−1)2(3z2 − 4z + 1) =
f(z)g(z), where g(z) = 3z2 − 4z + 1. It follows that f ′′ = f ′g + fg′, f ′′′ = f ′′g + 2f ′g′ + fg′′, f (iv) =
f ′′′g + 3f ′′g′ + 3f ′g′′ (due to g′′′ = 0). By induction, we have

f (n+1) = f (n)g + anf (n−1)g′ + bnf (n−2)g′′ (∗)

for some integers an and bn.

Suppose three consecutive coefficients are zero. Since the k-th coefficient is f (k)(0)/k! by Taylor’s
theorem, if f (n)(0) = f (n−1)(0) = f (n−2)(0) = 0, then f (n+1)(0) = 0 by (*) above. Hence, f (k)(0) = 0
for all k > n. That implies f(z) is a polynomial, which is false.

6. Let z = 2x+iy. We have
dz

z
=

d(2x + iy)
2x + iy

=
2x− iy

4x2 + y2
(2dx + idy) =

4x dx + y dy

4x2 + y2
+ i

(
2x dy − 2y dx

4x2 + y2

)
.

Therefore, by the residue theorem,
∮

C

y dx− x dy

4x2 + y2
= −1

2
Im

(∮

C

1
z

dz

)
= −1

2
(4π) = −2π.


