Solution of the Fourth HKUST Undergraduate Math Competition – Senior Level

1. Assume there exists a linear dependent relation $a_1v_{n_1} + \cdots + a_kv_{n_k} = 0$ with all $a_i \neq 0$ and k minimal. Note k > 1. We have $a_1\lambda_{n_1}v_{n_1} + \cdots + a_k\lambda_{n_k}v_{n_k} = T(a_1v_{n_1} + \cdots + a_kv_{n_k}) = 0$. Since k > 1, not all $\lambda_{n_i} = 0$, say $\lambda_{n_k} \neq 0$. Then $a_1(\lambda_{n_k} - \lambda_{n_1})v_{n_1} + \cdots + a_1(\lambda_{n_k} - \lambda_{n_{k-1}})v_{n_{k-1}} = 0$ with all $a_i(\lambda_{n_k} - \lambda_{n_i}) \neq 0$ $(i = 1, \dots, k - 1)$. This contradicts the minimality of k. So v_1, \dots, v_n are linearly independent.

Next, let V be the vector subspace spanned by $\sin(c_1x), \ldots, \sin(c_nx)$ in the set of all functions from \mathbb{R} to \mathbb{R} . Let T be the linear transformation d^2/dx^2 . Then the $-c_i^2$'s are distinct eigenvalues of T with distinct $\sin(c_ix)$ as eigenvectors. By the first part of the problem, $\sin(c_1x), \ldots, \sin(c_nx)$ are linearly independent.

2. Let f(n) denote the above sum. For convenience we define $A(\emptyset) = 0$ and include the empty set in the above summation. We will show that (*) $f(n) = n2^{n-1}$.

For n = 1, the sum reduces to $A(\{1\}) = 1$, which proves (*) in this case. Now assume $n \ge 2$. The subsets $S \subseteq \{1, 2, ..., n\}$ are either of the form S = S', where $S' \subseteq \{1, 2, ..., n-1\}$, or of the form $S' \cup \{n\}$, where $S' \subseteq \{1, 2, ..., n-1\}$. In the latter case, we have $A(S) = A(S' \cup \{n\}) = n - A(S')$. Hence,

$$f(n) = \sum_{S' \subseteq \{1,2,\dots,n-1\}} A(S') + \sum_{S' \subseteq \{1,2,\dots,n-1\}} (n - A(S')) = \sum_{S' \subseteq \{1,2,\dots,n-1\}} n = n2^{n-1}$$

since there are 2^{n-1} subsets S' of $\{1, 2, \ldots, n-1\}$. This proves (*) for $n \ge 2$.

3. (1) Let $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. We have $g \cdot i = \frac{ai+b}{ci+d} = i$ iff ai+b = (ci+d)i iff a = d, b = -c iff $g = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$. Since det g = 1, so $a^2 + b^2 = 1$. So g has the form $\begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$. For $z \in H$, we write z = b + ai, $b \in \mathbb{R}, a > 0$, then $\begin{pmatrix} a^{1/2} & a^{-1/2}b \\ 0 & a^{-1/2} \end{pmatrix} \cdot i = b + ai = z.$

(2) From (1), we may assume that z = i. If i and w are on the upper imaginary axis, then take g to be the identity matrix I. Otherwise, $\operatorname{Re} w \neq 0$. We claim we can find $g = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \neq -I$ such that $g \cdot w$ is on the upper imaginary axis. Then $g \cdot i = i$ and $g \cdot w$ are both on the upper imaginary axis. Observe

$$\operatorname{Re} g \cdot w = \operatorname{Re}\left(\frac{\cos\theta w + \sin\theta}{-\sin\theta w + \cos\theta}\right) = \frac{\left(-\tan^2\theta\operatorname{Re} w + \tan\theta(1 - |w|^2) + \operatorname{Re} w\right)\cos^2\theta}{|\underbrace{1 - \sin\theta w + \cos\theta}_{\neq 0}|^2}.$$

Now the equation $-x^2 \operatorname{Re} w + x(1-|w|^2) + \operatorname{Re} w = 0$ has a nonzero real root $x = \alpha$ since the discriminant is $(1-|w|^2)^2 + 4(\operatorname{Re} w)^2 \ge 0$. Then we take θ so that $\tan \theta = \alpha$.

4. Consider the 3^n *n*-tuples where each of the *n* coordinates is filled with a letter *L*, *R* or *N*. Each *n*-tuple with at least one *L* and at least one *R* corresponds to an ordered pair (*A*, *B*), where *A* is consisted of those *j* such that the *j*-th coordinate is *L* and *B* is consisted of those *k* such that the *k*-th coordinate is *R*.

Then there are $2^n - 1$ *n*-tuples having only *N* or *R* in the coordinates with at least one *R*. Similarly, there are $2^n - 1$ *n*-tuples having only *N* or *L* in the coordinates with at least one *L*. The last *n*-tuple has *N* in all coordinates. These *n*-tuples do not form any $(A, B) \in Y_n$. So the number of elements in Y_n is $3^n - 2(2^n - 1) - 1 = 3^n - 2^{n+1} + 1$.

5. From the power series of e^w , we have $f(z) = e^{z(z-1)^2}$. Observe that $f'(z) = e^{z(z-1)^2}(3z^2 - 4z + 1) = f(z)g(z)$, where $g(z) = 3z^2 - 4z + 1$. It follows that f'' = f'g + fg', f''' = f''g + 2f'g' + fg'', $f^{(iv)} = f'''g + 3f''g' + 3f'g''$ (due to g''' = 0). By induction, we have

$$f^{(n+1)} = f^{(n)}g + a_n f^{(n-1)}g' + b_n f^{(n-2)}g''$$
(*)

for some integers a_n and b_n .

Suppose three consecutive coefficients are zero. Since the k-th coefficient is $f^{(k)}(0)/k!$ by Taylor's theorem, if $f^{(n)}(0) = f^{(n-1)}(0) = f^{(n-2)}(0) = 0$, then $f^{(n+1)}(0) = 0$ by (*) above. Hence, $f^{(k)}(0) = 0$ for all k > n. That implies f(z) is a polynomial, which is false.

6. Let z = 2x + iy. We have $\frac{dz}{z} = \frac{d(2x + iy)}{2x + iy} = \frac{2x - iy}{4x^2 + y^2} (2dx + idy) = \frac{4x \, dx + y \, dy}{4x^2 + y^2} + i\left(\frac{2x \, dy - 2y \, dx}{4x^2 + y^2}\right)$. Therefore, by the residue theorem, $\oint_C \frac{y \, dx - x \, dy}{4x^2 + y^2} = -\frac{1}{2} \text{Im}\left(\oint_C \frac{1}{z} \, dz\right) = -\frac{1}{2}(4\pi) = -2\pi$.