Solution of the Fifth HKUST Undergraduate Math Competition – Senior Level

- 1. Let S_k be the statement that b_k and b_{k+1} are not both even. Note that if $b_1 = a_1$ is even, then $b_2 = a_2b_1 + 1$ is odd, so the statement S_1 is true. Suppose some S_k is false. Let k_0 be the smallest index for which S_{k_0} is false, i.e., both b_{k_0} and b_{k_0+1} are even. Since S_1 is true, $k_0 > 1$. Then S_{k_0-1} is true, i.e., the pair b_{k_0-1} , b_{k_0} is not both even. Since b_{k_0} is even, we must have b_{k_0-1} is odd. Buth then $b_{k_0+1} = a_{k_0+1}b_{k_0} + b_{k_0-1}$ is odd, which contradicts the hypothesis S_{k_0} is false. Therefore there is no index k for which statement S_k is false.
- 2. <u>Solution 1.</u> For each permutations σ of the *n* cards, pair σ with its reverse permutation σ^* . Let the second ace be at the k_{σ} -th card in the σ case. Then the second ace will be at the k_{σ^*} -th card in the σ^* case, where $k_{\sigma^*} = (n k_{\sigma} + 1)$. So the expected value of k is $(k_{\sigma} + k_{\sigma^*})/2 = (n + 1)/2$.

<u>Solution 2.</u> Let $X: \Omega \to \mathbb{N}$ be the random variable with X = k if the second ace comes at the k-th card, whence $p(X = k) = (k-1)(n-k)/\binom{n}{3}$ with $\sum_{k=2}^{n-1} (k-1)(n-k) = \binom{n}{3}$. Let $S = \binom{n}{3}EX = \sum_{k=2}^{n-1} k(k-1)(n-k)$. Replacing the running index k with n+1-k, we obtain $2S = (n+1)\sum_{k=2}^{n-1} (k-1)(n-k)$. Then EX = (n+1)/2.

3. For $x \ge 0$, define a function f by

$$f(x) = \begin{cases} \frac{\sqrt{1+x^2}-1}{x} & x > 0\\ 0 & x = 0 \end{cases}.$$

One can easily check that $\lim_{x\to 0^+} f(x) = 0$. So the function is continuous on $[0, +\infty)$. Furthermore, for x > 0, we have

$$f'(x) = \frac{1}{x^2} \left(1 - \frac{1}{\sqrt{1 + x^2}} \right) > 0.$$

This means f is an increasing function for $x \ge 0$. (In fact, $\lim_{x\to 0^+} f'(x) = \frac{1}{2}$ and the right-hand derivative at 0 is $\frac{1}{2}$.) Now,

$$\sin(\pi\sqrt{n^2+1}) = \sin\left(\pi n\sqrt{1+1/n^2}\right)$$
$$= \sin\left(\pi n\left(1+\sqrt{1+1/n^2}-1\right)\right) = \sin\left(\pi n+\pi\frac{\sqrt{1+1/n^2}-1}{1/n}\right)$$
$$= (-1)^n \sin\left(\pi\frac{\sqrt{1+1/n^2}-1}{1/n}\right) = (-1)^n \sin\left(\pi f\left(\frac{1}{n}\right)\right).$$

The sequence $\sin(\pi f(\frac{1}{n}))$ is decreasing with limit zero. By the alternating series test, the sequence converges.

4. Let $V = \mathbb{R}^n$. Then $M^2 V$ is a vector subspace of MV. The dimension of the quotient space $MV/M^2 V$ is rank M – rank M^2 . Similarly, the dimension of the quotient space $M^2 V/M^3 V$ is rank M^2 – rank M^3 .

Now M induces a linear transformation from MV/M^2V onto M^2V/M^3V due to $M(Mx + M^2V) = M^2x + M^3V$. So $\dim(M^2V/M^3V) \leq \dim(MV/M^2V)$, which yields rank M^2 – rank $M^3 \leq \operatorname{rank} M - \operatorname{rank} M^2$. Then rank $M^2 \leq (\operatorname{rank} M + \operatorname{rank} M^3)/2$.

5. Assume such f exists. Then zf(z) satisfies the quadratic equation (in the variable w)

$$e^{p(z)}w^2 + q(z)w + e^{r(z)} = 0$$

When |z| = 1, the given equations on p, q and r guarantee that the roots w of the above quadratic equation must be real. Therefore, on $C = \{z : |z| = 1\}$, the value zf(z) must be real.

Note that zf(z) is also an entire function. Hence, the real-valued function v(x, y) = Im(zf(z)), where z = x + iy, is harmonic by the Cauchy-Riemann equations.

Moreover, zf(z) is real valued on C. So the harmonic function v(x, y) = 0 on C. By the maximum principle, v(x, y) = 0 for $x^2 + y^2 < 1$. Stardard argument using the Cauchy-Riemann equations then shows zf(z) is a real constant function for $x^2 + y^2 < 1$.

Now the constant must be 0 since zf(z) = 0 when z = 0. Hence, f(z) = 0 on the annulus $\{z : 0 < |z| < 1\}$. By the identity theorem, $f \equiv 0$ on \mathbb{C} . Then $e^{r(z)} = 0$ on \mathbb{C} , which is a contradiction.

6. For x in the center of G, the conjugacy class of x is just $\{x\}$. For x not in the center of G, the normalizer $N_x(G) = \{g \in G : xg = gx\}$ of x contains x and the center of G. Now $N_x(G)$ is not equal to G due to x not in the center. So $N_x(G)$ has at least $p^2 + 1$ elements and less than p^4 elements. Then the order of $N_x(G)$ can only be p^3 . The number of elements in the conjugacy class of x is the index of $N_x(G)$, which is $p^4/p^3 = p$. Therefore, the number of conjugacy classes of G is $p^2 + (p^4 - p^2)/p = p^2 + p^3 - p$.