Sixth HKUST Undergraduate Math Competition – Junior Level

April 28, 2018

Directions: This is a three hour test. No calculators are allowed. **For every problem**, **provide complete details of your solution**.

Problem 1. Find
$$\int_0^\infty \frac{dx}{(x^2+1)(1+x^8)}$$
. Show details.

Problem 2. Let A be a real orthogonal $n \times n$ matrix. Determine for which positive integers n there exists a real orthogonal $n \times n$ matrix B such that A + B is a real orthogonal matrix.

Problem 3. Let $f:[0,1] \to (0,+\infty)$ be continuous and strictly decreasing. Prove that

$$\frac{\int_0^1 x f^2(x) \, dx}{\int_0^1 x f(x) \, dx} \le \frac{\int_0^1 f^2(x) \, dx}{\int_0^1 f(x) \, dx}.$$

Problem 4. In \mathbb{R}^2 , let D be a closed disk with positive radius and center at (0,0). Prove that for every (a,b) in \mathbb{R}^2 , there exists a positive integer n such that the set $S = \{(x + na, y + nb) : (x, y) \in D\}$ contains an element (p, q), where p and q are integers.

Problem 5. Let $f: (-1,1) \to \mathbb{R}$ be a function of the form $f(x) = \sum_{i=0}^{\infty} c_i x^i$, where each coefficient $c_i \in \{0,1,2\}$. If $f\left(\frac{4}{5}\right) = \frac{5}{4}$, then prove that $f\left(\frac{1}{3}\right)$ is an irrational number.

Problem 6. Let k_1, k_2, k_3, \ldots be a sequence of strictly increasing positive integers such that $\lim_{n \to \infty} \frac{k_n}{n} = +\infty$. Prove that $\sum_{n=1}^{\infty} \frac{(-1)^{[\sqrt{n}]}}{k_n}$ converges, where [x] is the greatest integer less than or equal to x.

– End of Paper –