Solution of the Sixth HKUST Undergraduate Math Competition — Junior Level
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Adding these, we get 2I(t) = / TUQ Dividing by 2 and letting ¢ go to co, we get the answer is
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. Such a B matrix exists if and only if there exists a real orthogonal n x n matrix V so A + AV is
orthogonal, i.e. A(I +V)(I + VT)AT = I, which is the same as V2 +V + I = 0. No matrix with a real
cos(2m/3) —sin(27/3)
sin(27/3)  cos(27/3) >
and V = diag(M, M, ..., M) with M occuring n/2 times will work as V2 4+ V + I = 0 by a checking.

eigenvalue satisfies this, hence no solution if n is odd. For n even, let M = (
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. The conclusion is equivalent to I :/ 2(x) dx/ yf(y) dy —/ f(x) dx/ yf%(y) dy > 0. Now
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I— /01 /01 f(x)f(y)y(f(x) - f(y)) de dy and I = /01 /01 f(y)f(x)x(f(y) _ f(x)) dz dy.
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Adding these, we get 21 :/ / f@)fy)(y — x)(f(x) — f(y)) dz dy. Since f > 0 and f is strictly
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decreasing on [0, 1], for all ,y € [0, 1], we have (y — z)(f(x) — f(y)) > 0. So 2I > 0. Therefore, I > 0.

. Let 7 be the radius of D and s be an integer greater than v/2/r. Consider the points Ay = (ka—[ka], kb—
[kb]) for k = 0,1,2,...,s%. Since these k? points are in W = [0, 1] x [0, 1], there exist two of them, say
A;, Aj with j > 4, in a square with side 1/s. Then the segment A;A; has length at most V2 /s, which
is less than r. Let n = j — 4, p = [ja] — [ia] and g = [jb] — [ib]. Then p, q are integers and (na,nbd) and
(p, q) has distance

V(na —p)? + (nb — q)? = \/(ja — [ja] —ia + [ia])? + (jb — [jb] — ib + [ib])? < V2/s <.

1 1 > .
. Assume f (g) is rational. Then f (g) = g ¢;37" is the base 3 expansion of a rational number. It must
i=0

be eventually periodic. Hence, there exist positive integer m,n with ¢; = ¢4 for all ¢ > n. Then
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right-hand side have odd denominators. Then, the denominator of the sum must be odd, which is a
contradiction.

converges by the

1
knv/n
n
. We claim Sn=Z(—1)[ﬁ]ai is a Cauchy sequence. To bound
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. From lim (—/—) = lim — =0 and converges, we get
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limit comparison test. Let a":k:_
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Sy — Sm—1 = Z(—l)[ﬂ] a; from above, we delete all terms with [v/4] = [\/m] if [\/m] is odd and insert
i=m
all missing terms with [v/i] = [\/m] if [\/m] is even. Similarly delete or insert terms with [v/i] = [v/n]. (If
[v/n] = [v/m] and this is odd, then this tells us to delete all terms to get 0 as an upper bound; otherwise
assume some terms remain.) Thus, for a fixed n, taking 1 < m < n, there exist ¢, j with ¢ < j such that
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Note that i — oo as m — co. We claim the last expression goes to 0 as ¢ — oo. The second term goes to
0 as i — 0 due to Y a,/+/u converges. So we just need to show the first term also goes to 0. Suppose
not. For some ¢ > 0, assume (47 4 1)a(z;)2 > ¢ infinitely often. Recursively take i; > 2i;_; for t > 1,
with (42,5 + 1)0/(2“)2 > e. Now
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which is a contradiction. So lim sup{S, — Sm—1: m <n} < 0. Similarly, we can bound S,, — S;,—1 =
n—oo
n (25)*-1

g (—1)[‘/’?} ag > g (—1)wﬂat from below to conclude that lim inf{S, — S;,—1:m <n} > 0. So
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»n is a Cauchy sequence, hence converges.
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