Sixth HKUST Undergraduate Math Competition – Senior Level

April 28, 2018

Directions: This is a three hour test. No calculators are allowed. **For every problem**, **provide complete details of your solution**.

Problem 1. Let *n* be a positive integer and *A*, *B* be $n \times n$ matrices over the complex numbers. Prove that *A* and *B* have a common eigenvalue if and only if AX = XB for some $n \times n$ matrix $X \neq 0$.

Problem 2. Find all continuous functions $y : [0, \infty) \to \mathbb{R}$ such that y(0) = 0, y is differentiable on $(0, \infty)$ satisfying $y'(x) = \int_0^x \sin(y(u)) \, du + \cos x$ for all x > 0.

Problem 3. Let a and b be positive integers with a > 1. If a and b are both odd or both even, then prove that $2^a - 1$ does not divide $3^b - 1$.

Problem 4. Let $f : [0,1] \times \mathbb{R} \to \mathbb{R}$ be continuous such that for every $x \in [0,1]$ and $y_0 \neq y_1$ in \mathbb{R} , we have

$$\frac{1}{2} \le \frac{f(x, y_0) - f(x, y_1)}{y_0 - y_1} \le \frac{3}{2}.$$

Prove that there exists a unique real-valued continuous function h on [0,1] such that for all $x \in [0,1]$, f(x,h(x)) = 0.

Problem 5. Let $u \cdot v$ denote the usual inner product of $u, v \in \mathbb{R}^n$. For positive integer k < n, let G(k, n) be the set of all k-dimensional linear subspaces in \mathbb{R}^n . For $v \in \mathbb{R}^n$ and a linear subspace S in \mathbb{R}^n , let d(v, S) denote the usual distance from v to S. For $V \in G(k, n)$, let $B(V) = \{v \mid v \in V, v \cdot v = 1\}$. For $V, U \in G(k, n)$, let $d(V, U) = \max\{d(v, U) \mid v \in B(V)\}$.

- (a) Prove that for $V, W, U \in G(k, n), d(V, U) \le d(V, W) + d(W, U)$.
- (b) Let $\{v_1, v_2, \ldots, v_k\}$, $\{w_1, w_2, \ldots, w_k\}$ be orthonormal basis of $V, W \in G(k, n)$ respectively. Let A be the $k \times k$ matrix with (i, j) entry equal $v_i \cdot w_j$. Let λ be the smallest eigenvalue of AA^T . Determine the value of d(V, W) in terms of λ .
- (c) Prove that d(V, W) = d(W, V) for all $V, W \in G(k, n)$.

Problem 6. Let $S = \{z \mid z \in \mathbb{C}, 0 < |z| < 2\}$ and $f : S \to \mathbb{C}$ be a holomorphic function such that $\operatorname{Re} f(z) \ge 0$ and $\operatorname{Im} f(z) \ge 0$ for all $z \in S$. Prove that f has a removable singularity at 0.

– End of Paper –