Solution of the Sixth HKUST Undergraduate Math Competition – Senior Level

1. Suppose c is a common eigenvalue of A and B. Since B and B^T have the same eigenvalues due to similarity, we have Av = cv and $B^Tw = cw$ for some nonzero column vectors v and w. Let $X = vw^T$. Then $X \neq 0$ and $AX = cvw^T = vw^TB = XB$.

Conversely, suppose AX = XB for some $X \neq 0$. By induction, f(A)X = Xf(B) for every polynomial f. Take $f(z) = \det(zI - B) = (z - z_1)(z - z_2) \cdots (z - z_n)$. By the Cayley-Hamilton's Theorem, f(B) = 0. So $(A - z_1I)(A - z_2I) \cdots (A - z_nI)x = 0$ for some $x \neq 0$. This implies $A - z_rI$ is singular for some r. Then z_r is an eigenvalue of A and B.

2. The function y(x) = x is a solution. Suppose w(x) is another solution. Then

$$|y'(x) - w'(x)| \le \int_0^x |\sin y(u) - \sin w(u)| \ du \le \int_0^x |y(u) - w(u)| \ du.$$

If $t = \inf\{x > 0 : y(x) \neq w(x)\} < \infty$, then $0 < c = \sup\{|y(x) - w(x)| : x \le t + 1\} < \infty$. However, for $x \le t, y(x) = w(x)$ and for $t \le x \le t + 1$,

$$|y(x) - w(x)| = \left| \int_{t}^{x} (y'(s) - w'(s) \, ds \right| \le \int_{t}^{x} \int_{0}^{s} |y(u) - w(u)| \, du \, ds$$
$$= \int_{t}^{x} \int_{t}^{s} |y(u) - w(u)| \, du \, ds \le \frac{c(x-t)^{2}}{2} \le \frac{c}{2}$$

Thus, $c \leq c/2$, a contradiction. So y(x) = x is the unique solution.

Remarks. For those who used a uniqueness theorem, they need to provide and check the relevant condition, such as Lipschitz' condition.

3. If a is even, then 3 divides $2^a - 1$, but 3 does not divide $3^b - 1$. So $2^a - 1$ does not $3^b - 1$. If a > 1 is odd, then $m = 2^a - 1 \equiv 1 \pmod{3}$. Hence, $\left(\frac{m}{3}\right) = +1$ in the Legendre symbol (as well as the Jacobi symbol). By quadratic reciprocity, $\left(\frac{3}{m}\right) = \left(\frac{m}{3}\right)(-1)^{(m-1)(3-1)/4}$. Now $(m-1)/2 = 2^{a-1} - 1$ is odd and so is (3-1)/2. Then $\left(\frac{3}{m}\right) = -\left(\frac{m}{3}\right) = -1$. Thus, 3 is a quadratic nonresidue (mod m).

Assume $2^a - 1 \mid 3^b - 1$ with b = 2n - 1. It follows that $m \mid 3^{2n} - 3$. Therefore, $(3^n)^2 \equiv 3 \pmod{m}$. However, this implies that 3 is a quadratic residue (mod m), which is a contradiction. Therefore, $2^a - 1$ cannot divide $3^b - 1$ if a and b are odd.

4. Define $T : C[0,1] \to C[0,1]$ by (Tg)(x) = g(x) - f(x,g(x)). For every $x \in [0,1]$, if g(x) = h(x), then |(Tg)(x) - (Th)(x)| = 0. Otherwise,

$$\begin{split} |(Tg)(x) - (Th)(x)| &= |g(x) - f(x, g(x)) - h(x) + f(x, h(x))| \\ &= \left|1 - \frac{f(x, g(x)) - f(x, h(x))}{g(x) - h(x)}\right| |g(x) - h(x)| \\ &\leq \frac{1}{2} |g(x) - h(x)|. \end{split}$$

So $||Tg - Th|| \le \frac{1}{2}||g - h||$. By the contractive mapping theorem, T has a unique fixed point h. Then T(h) = h and f(x, h(x)) = 0 for all $x \in [0, 1]$.

5. (a) By compactness of B(V) and continuity of d, there exists $v_0 \in B(V)$ satisfying $d(v_0, U) = d(V, U)$. Let $w \in W$ be the orthogonal projection of v_0 onto W. Then $d(v_0, w) = d(v_0, W) \leq d(V, W)$. Since $w \cdot w \leq 1$, $d(w, U) \leq d(w/|w|, U) \leq d(W, U)$. So

$$d(V, U) = d(v_0, U) \le d(v_0, w) + d(w, U) \le d(V, W) + d(W, U).$$

(b) Let $x = x_1v_1 + x_2v_2 + \cdots + x_kv_k \in B(V)$. The projection of x onto W is

$$(x \cdot w_1)w_1 + (x \cdot w_2)w_2 + \dots + (x \cdot w_k) = \sum_{i,j=1}^k (v_i \cdot w_j)x_iw_j.$$

Then
$$d(x, W)^2 = x \cdot x - \left(\sum_{i,j=1}^k (v_i, w_j) x_i w_j\right) \cdot \left(\sum_{i,j=1}^k (v_i, w_j) x_i w_j\right) = 1 - [x_1 \cdots x_k] A A^T [x_1 \cdots x_k]^T.$$

Now AA^T is symmetric, hence diagonalizable. So there is a unitary matrix P such that $AA^T = P^{-1}MP$, where M is the diagonal matrix with the eigenvalues of AA^T as entries in increasing order $\lambda = \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_k$. For all $x = x_1v_1 + x_2v_2 + \cdots + x_nv_n \in B(V)$, $xMx^T = \lambda_1x_1^2 + \cdots + \lambda_kx_k^2 \geq \lambda_1(x_1^2 + \cdots + x_k^2) = \lambda$. So the minimum of xMx^T is λ and for unit eigenvectors (x_1, x_2, \ldots, x_k) of λ , $d(V, W) = d(x, W) = \sqrt{1 - \lambda}$.

(c) From (b), we have $d(W, V) = \sqrt{1 - \alpha}$, where α is the least eigenvalue of $A^T A$. Since $(A^T A)^T = A^T A^T A^T A$, so $\alpha = \lambda$ and d(V, W) = d(W, V).

6. Suppose f is not constant, then the range of f is an open subset of the first quadrant. Let g be a Möbius map from the open first quadrant to the open unit disk. We see $g \circ f$ is bounded. Then 0 is a removable singularity of $g \circ f$. So $g \circ f$ can be extended to a holomorphic map on $S \cup \{0\}$. Then $f = g^{-1} \circ (g \circ f)$ has a removable singularity at 0.

Alternatively, let the Laurent series of f on S be $\sum_{k=-\infty}^{\infty} a_k z^k$. We will show $a_{-n} = 0$ for all $n \ge 1$. Consider $I_{\pm} = \int_0^{2\pi} f(re^{i\theta})(1 \pm \cos n\theta) \ d\theta$. From the given condition, observe that $1 \pm \cos n\theta \ge 0$. We get Re I_{\pm} and Im I_{\pm} are both nonnegative for all $r \in (0, 2)$ and $n \ge 1$. Next we will express the above integral as a contour integral. For $r \in (0, 2)$, we consider the change of variable $z = re^{i\theta}$ with $\theta \in [0, 2\pi]$ and apply the residue theorem to get

$$I_{\pm} = \int_{|z|=r} f(z) \Big[1 \pm \frac{1}{2} \Big(\frac{z^n}{r^n} + \frac{r^n}{z^n} \Big) \Big] \frac{dz}{iz} = 2\pi \Big[a_0 \pm \frac{1}{2} \Big(\frac{a_{-n}}{r^n} + a_n r^n \Big) \Big].$$

Since $\operatorname{Re} I_{\pm} \geq 0$ and $\operatorname{Im} I_{\pm} \geq 0$, we get

$$\operatorname{Re}\left[a_{0}r^{n} \pm \frac{1}{2}(a_{-n} + a_{n}r^{2n})\right] \ge 0 \quad \text{and} \quad \operatorname{Im}\left[a_{0}r^{n} \pm \frac{1}{2}(a_{-n} + a_{n}r^{2n})\right] \ge 0$$

for all $r \in (0,2)$ and $n \ge 1$. By letting $r \to 0^+$, we conclude that $\operatorname{Re} a_{-n} = \operatorname{Im} a_{-n} = 0$ for all $n \ge 1$. Hence, $a_{-n} = 0$ for all $n \ge 1$. Therefore, at 0, f has a removable singularity.