
Solution of the Sixth HKUST Undergraduate Math Competition – Senior Level

1. Suppose c is a common eigenvalue of A and B. Since B and BT have the same eigenvalues due to
similarity, we have Av = cv and BT w = cw for some nonzero column vectors v and w. Let X = vwT .
Then X 6= 0 and AX = cvwT = vwT B = XB.

Conversely, suppose AX = XB for some X 6= 0. By induction, f(A)X = Xf(B) for every poly-
nomial f. Take f(z) = det(zI − B) = (z − z1)(z − z2) · · · (z − zn). By the Cayley-Hamilton’s Theorem,
f(B) = 0. So (A− z1I)(A − z2I) · · · (A− znI)x = 0 for some x 6= 0. This implies A − zrI is singular for
some r. Then zr is an eigenvalue of A and B.

2. The function y(x) = x is a solution. Suppose w(x) is another solution. Then

|y′(x) − w′(x)| ≤
∫ x

0

| sin y(u) − sin w(u)| du ≤
∫ x

0

|y(u) − w(u)| du.

If t = inf{x > 0 : y(x) 6= w(x)} < ∞, then 0 < c = sup{|y(x) − w(x)| : x ≤ t + 1} < ∞. However, for
x ≤ t, y(x) = w(x) and for t ≤ x ≤ t + 1,

|y(x) − w(x)| =
∣∣∣
∫ x

t

(y′(s) − w′(s) ds
∣∣∣ ≤

∫ x

t

∫ s

0

|y(u) − w(u)| du ds

=
∫ x

t

∫ s

t

|y(u) − w(u)| du ds ≤ c(x − t)2

2
≤ c

2

.

Thus, c ≤ c/2, a contradiction. So y(x) = x is the unique solution.

Remarks. For those who used a uniqueness theorem, they need to provide and check the relevant
condition, such as Lipschitz’ condition.

3. If a is even, then 3 divides 2a − 1, but 3 does not divide 3b − 1. So 2a − 1 does not 3b − 1. If a > 1 is
odd, then m = 2a − 1 ≡ 1 (mod 3). Hence,

(m

3

)
= +1 in the Legendre symbol (as well as the Jacobi

symbol). By quadratic reciprocity,
( 3

m

)
=

(m

3

)
(−1)(m−1)(3−1)/4. Now (m − 1)/2 = 2a−1 − 1 is odd

and so is (3 − 1)/2. Then
( 3

m

)
= −

(m

3

)
= −1. Thus, 3 is a quadratic nonresidue (mod m).

Assume 2a − 1 | 3b − 1 with b = 2n− 1. It follows that m | 32n − 3. Therefore, (3n)2 ≡ 3 (mod m).
However, this implies that 3 is a quadratic residue (mod m), which is a contradiction. Therefore, 2a − 1
cannot divide 3b − 1 if a and b are odd.

4. Define T : C[0, 1] → C[0, 1] by (Tg)(x) = g(x) − f(x, g(x)). For every x ∈ [0, 1], if g(x) = h(x), then
|(Tg)(x) − (Th)(x)| = 0. Otherwise,

|(Tg)(x) − (Th)(x)| = |g(x) − f(x, g(x)) − h(x) + f(x, h(x))|

=
∣∣1 − f(x, g(x)) − f(x, h(x))

g(x) − h(x)

∣∣∣|g(x) − h(x)|

≤ 1
2
|g(x) − h(x)|.

So ‖Tg − Th‖ ≤ 1
2‖g − h‖. By the contractive mapping theorem, T has a unique fixed point h. Then

T (h) = h and f(x, h(x)) = 0 for all x ∈ [0, 1].



5. (a) By compactness of B(V ) and continuity of d, there exists v0 ∈ B(V ) satisfying d(v0, U ) = d(V, U ).
Let w ∈ W be the orthogonal projection of v0 onto W. Then d(v0, w) = d(v0, W ) ≤ d(V, W ). Since
w · w ≤ 1, d(w, U ) ≤ d(w/|w|, U ) ≤ d(W, U ). So

d(V, U ) = d(v0, U ) ≤ d(v0, w) + d(w, U ) ≤ d(V, W ) + d(W, U ).

(b) Let x = x1v1 + x2v2 + · · ·+ xkvk ∈ B(V ). The projection of x onto W is

(x · w1)w1 + (x · w2)w2 + · · ·+ (x · wk) =
k∑

i,j=1

(vi · wj)xiwj.

Then d(x, W )2 = x · x −
( k∑

i,j=1

(vi, wj)xiwj

)
·
( k∑

i,j=1

(vi, wj)xiwj

)
= 1 − [x1 · · · xk]AAT [x1 · · · xk]T .

Now AAT is symmetric, hence diagonalizable. So there is a unitary matrix P such that AAT =
P−1MP, where M is the diagonal matrix with the eigenvalues of AAT as entries in increasing order
λ = λ1 ≤ λ2 ≤ · · · ≤ λk. For all x = x1v1 + x2v2 + · · ·+ xnvn ∈ B(V ), xMxT = λ1x

2
1 + · · ·+ λkx2

k ≥
λ1(x2

1 + · · · + x2
k) = λ. So the minimum of xMxT is λ and for unit eigenvectors (x1, x2, . . . , xk) of λ,

d(V, W ) = d(x, W ) =
√

1 − λ.

(c) From (b), we have d(W, V ) =
√

1 − α, where α is the least eigenvalue of AT A. Since (AT A)T = AT A,

so α = λ and d(V, W ) = d(W, V ).

6. Suppose f is not constant, then the range of f is an open subset of the first quadrant. Let g be a Möbius
map from the open first quadrant to the open unit disk. We see g ◦f is bounded. Then 0 is a removable
singularity of g ◦ f. So g ◦ f can be extended to a holomorphic map on S ∪ {0}. Then f = g−1 ◦ (g ◦ f)
has a removable singularity at 0.

Alternatively, let the Laurent series of f on S be
∞∑

k=−∞

akzk. We will show a−n = 0 for all n ≥ 1.

Consider I± =
∫ 2π

0

f(reiθ)(1 ± cos nθ) dθ. From the given condition, observe that 1 ± cos nθ ≥ 0. We

get Re I± and Im I± are both nonnegative for all r ∈ (0, 2) and n ≥ 1. Next we will express the above
integral as a contour integral. For r ∈ (0, 2), we consider the change of variable z = reiθ with θ ∈ [0, 2π]
and apply the residue theorem to get

I± =
∫

|z|=r

f(z)
[
1 ± 1

2

(zn

rn
+

rn

zn

)]dz

iz
= 2π

[
a0 ±

1
2

(a−n

rn
+ anrn

)]
.

Since Re I± ≥ 0 and Im I± ≥ 0, we get

Re
[
a0r

n ± 1
2
(a−n + anr2n)

]
≥ 0 and Im

[
a0r

n ± 1
2
(a−n + anr2n)

]
≥ 0

for all r ∈ (0, 2) and n ≥ 1. By letting r → 0+, we conclude that Re a−n = Im a−n = 0 for all n ≥ 1.
Hence, a−n = 0 for all n ≥ 1. Therefore, at 0, f has a removable singularity.


