
9th HKUST Undergraduate Math Competition – Senior Level

Suggested Solutions

Problem 1. By Euler’s Theorem, aϕ(n) ≡ 1 (mod n).

Note that ϕ(100) = 40, hence we need to know

2323
23

(mod 40)

Since ϕ(40) = 16, we need to know

2323 ≡ 77 (mod 16)

By direct computation, we get

77 ≡ 49× 49× 49× 7 ≡ 1× 1× 1× 7 ≡ 7 (mod 16),

and
2323

23 ≡ 237 ≡ 232 × 232 × 232 × 7 ≡ 9× 9× 9× 7 ≡ 7 (mod 40)

hence again by direct computation

2323
2323 ≡ 237 ≡ 232 × 232 × 232 × 23 ≡ 29× 29× 29× 23 ≡ 41× 67 ≡ 47 (mod 100).

Therefore the last two digits are 47.



Problem 2. When p = 2, we see that SL2(Fp) has more than 2 = |Sp| elements and hence,
such a φ cannot exist.

When p > 2, consider

A =

[
1 1
0 1

]
and B =

[
−1 0
0 −1

]
.

Observe that A and B have order p and 2, respectively and that they commute. Thus, AB has
order 2p. But there is no permutation in Sp of order 2p: only p-cycles have order divisible by
p, and their order is exactly p.
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Problem 3. Let Tc : f(x) 7→ f(c) be the evaluation map. It is clear that Tc is surjective with
kernel Ic, hence the quotient ring C[0, 1]/Ic ≃ R by the homomorphism theorem. Since R is a
field, so Ic is a maximal ideal.

Conversely, suppose I is a maximal ideal. We prove I = Ic by contradiction. Suppose I ≠ Ic
for any c, there exists fc ∈ I such that fc /∈ Ic, so fc(c) ̸= 0. so fc(x) is not 0 everywhere
in an open neighborhood of Vc containing c. It is clear that the open sets Vc (as c varies over
[0, 1]) covers [0, 1]. Because [0, 1] is compact, this cover has a finite subcover. That is, there is
c1, . . . , cn such that

Vc1 ∪ · · · ∪ Vcn = [0, 1].

Since fci(x) is not 0 at any point in Vci , so fci(x)
2 > 0 for all x ∈ Vc. So F (x) =

∑n
i=1 fci(x)

2 > 0
for all x ∈ [0, 1]. So 1

F (x) ∈ C[0, 1]. Since fci(x) ∈ I, F (x) ∈ I, 1 = 1
F (x) · F (x) ∈ I, so

I = C[0, 1], this contradicts to the assumption I is a maximal ideal.

(You must use compactness of [0, 1] since the statement is wrong on e.g. C(0, 1).)
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Problem 4. It is clear that d is a metric by the triangle inequality of the absolute values.

Let (xn) be a Cauchy sequence in d. Since |x− y| ≤ d(x, y), it is also a Cauchy in R.

We claim that (xn) cannot converge to a rational number: Suppose xn → qk. Then for any
n, there exists m > n such that d(xn, xm) ≥ |xn − xm| + 2−k, a contradiction to (xn) being
Cauchy.

On the other hand, we claim that d(x, y) is equivalent to the Euclidean metric |x− y| on R \Q:
it is clear that the open ball Bd(p, ϵ) ⊂ B|·|(p, ϵ). We show that for any ϵ > 0, there exists δ > 0
such that (R \Q) ∩B|·|(p, δ) ⊂ Bd(p, ϵ).

We do a rough estimate as follows. For any ϵ > 0, we split the summation in d into
∑N

i=1 and∑∞
i=N . Choose N big enough so that the second summation < 1

2N+1 < ϵ
3 .

For the initial terms, if we take δ < ϵ
3 such that δ < |p−qi|

2 for all i ≤ N . Then for |x− p| < δ,

and fixed i ≤ N both max
j≤i

1

|x− qj |
and max

j≤i

1

|p− qj |
will be dominated by the same choice of

qki ∈ Q (closest to both x and p and lying on same side) for some ki ≤ i, hence the term in the

summation will be = |x−p|
|x−qki ||p−qki |

< δ
|x−qki ||p−qki |

< 2δ
|p−qki |

2 . Since we have only finitely many

such terms with nonzero denominator, the total contribution can be chosen to be < ϵ
3 if δ is

small enough.

Therefore if a Cauchy sequence (xn) does not converge to rational, it must converge to some
irrational with respect to d, hence (R \Q, d) is complete.

Alternative Solution (by Ji Wenzhou). We show that d and ∥ · ∥ are equivalent as follows.
As before, lim

n→∞
|xn − x| = 0 =⇒ lim

n→∞
d(xn, x) = 0.

On the other hand, assume |xn − x| → 0 for x ∈ R \ Q. We show that lim
n→∞

d(xn, x) = 0.

Note that the term
∑

2−i inf
(
· · ·
)
in the definition of d is absolutely convergent, so we can

interchange limit and summation.

lim
n→∞

d(xn, x) = lim
n→∞

|xn − x|+
∞∑
i=1

2−i lim
n→∞

inf

(
1,

∣∣∣∣max
j≤i

1

|xn − qj |
−max

j≤i

1

|x− qj |

∣∣∣∣)
Hence it is enough to argue that for each fixed i,

lim
n→∞

max
j≤i

1

|xn − qj |
= max

j≤i

1

|x− qj |
,

which is clear since max(· · · ) is a continuous function on finitely many terms and the denomi-
nator is nonzero for irrational xn and x.
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Problem 5. Let ϕ : R2
>1 → R>0 × R>1 be given by

ϕ(x, y) = (w, z) =

(
log x, 1 +

log y

log x

)
.

It is invertible with{
w = log x

z = 1 + log y/ log x
⇔

{
log x = w

log y = w(z − 1)
⇔

{
x = ew

y = ew(z−1)

and the Jacobian |Dϕ−1| =
∣∣∣∣ ew 0

(z − 1)ew(z−1) wew(z−1)

∣∣∣∣ = wewz.

The joint probability density is then given by

f(w, z) = (log x)(1 +
log y

log x
)
1x>1

x2
1y>1

y2
= 1w>01z>1

wewz

e2we2w(z−1)
|Dϕ−1| = 1w>01z>1we

−wz.

By the formula of marginal density, the density of W is given by∫
R
1w>01z>1ze

−wzdz = 1w>0

[
−e−wz

]+∞
z=1

= 1w>0e
−w.

Hence W ∼ E(1) is the exponential distribution.

The density of Z is given by∫
R
1w>01z>1we

−wzdw = 1z>1

∫ +∞

0
we−wzdw

= 1z>1

[
w × −1

z
e−wz

]+∞

w=0

+
1z>1

z

∫ +∞

0
e−wzdw

= 0 +
1z>1

z

[
−1

z
e−wz

]+∞

w=0

=
1z>1

z2
.

Hence Z satisfies the Pareto distribution with parameter 2.

Alternative Solution (by Mengchen Xu). Let FW (w) = Prob(W ≤ w) be the probability
distribution ofW . Then it is supported on x > 1 ⇐⇒ w > 0, and Prob(W ≤ w) = Prob(logX ≤
log x) = Prob(X ≤ x), hence

FW (w) = FX(x) =

∫ x

1

dt

t2
= 1− 1

x
= 1− e−w

Hence W ∼ E(1) is the exponential distribution with density 1w>0e
−w.

Now X,Y > 1 implies FZ(z) = Prob(Z ≤ z) is supported on z > 1. We have

FZ(z) = Prob(1 +
log Y

logX
≤ z)

= Prob(Y ≤ Xz−1)

=

∫ ∞

1

∫ xz−1

1

dy

y2
dx

x2

=

∫ ∞

1

1

x2

(
1− 1

xz−1

)
dx

= 1− 1

z
.

Hence the density is
1z>1

z2
and Z satisfies the Pareto distribution with parameter 2.
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Problem 6. Substituting Li′2(x) = − log(1− x)

x
, and integration by parts, we have∫ 1

0

log(x) log2(1− x)

x
dx = −

∫ 1

0
log x log(1− x)Li′2(x)dx

= −
[
log x log(1− x)Li2(x)

]1
0
+

∫ 1

0

(
log(1− x)

x
− log x

1− x

)
Li2(x)dx

= −
∫ 1

0
Li′2(x)Li2(x)dx−

∫ 1

0

log x

1− x
Li2(x)dx

= −1

2
Li22(1)−

∫ 1

0

∞∑
k=0

xk log(x)

∞∑
n=1

xn

n2
dx

= −1

2
ζ(2)2 −

∞∑
n=1

1

n2

∞∑
k=0

∫ 1

0
xn+k log(x)dx

= −1

2
ζ(2)2 +

∞∑
n=1

1

n2

∞∑
k=0

1

(n+ k + 1)2

= −1

2
ζ(2)2 +

∞∑
n=1

1

n2

∞∑
k=n+1

1

k2

where the interchange of integration and summation is justified by Tonelli’s Theorem (all the
terms are measurable functions and have the same sign).

By symmetry, we can evaluate

∞∑
n=1

1

n2

∞∑
k=n+1

1

k2
=

1

2

( ∞∑
n=1

1

n2

∞∑
k=1

1

k2
−

∞∑
n=1

1

n4

)
=

1

2
ζ(2)2 − 1

2
ζ(4)

hence the final answer is −1

2
ζ(4) = − π4

180
.

Alternative Solution. Writing log(1− x) = −
∞∑
n=1

xn

n
, we have

∫ 1

0

log x log2(1− x)

x
dx =

∫ 1

0

∞∑
n,m=1

xnxm

nm

log x

x
dx

= −
∞∑

n,m=1

1

nm

∫ 1

0
xn+m−1 log xdx

= −
∞∑

n,m=1

1

nm(n+m)2

where the interchange of integration and summation is justified by Tonelli’s Theorem.

By partial fraction,

∞∑
n,m=1

1

nm(n+m)2
=

∞∑
n,m=1

(
1

n
− 1

n+m

)
1

m2(n+m)

=

∞∑
n,m=1

1

m2n(n+m)
−

∞∑
n,m=1

1

m2

1

(n+m)2
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The first summation by symmetry gives

∞∑
n,m=1

1

m2n(n+m)
=

1

2

 ∞∑
n,m=1

1

m2n(n+m)
+

1

n2m(n+m)

 =
1

2

∞∑
m,n=1

1

m2n2
=

1

2
ζ(2)2

while the second summation is the same as previous solution:

∞∑
n,m=1

1

m2

1

(n+m)2
=

1

2
ζ(2)2 − 1

2
ζ(4).

Combining we obtain the answer −1

2
ζ(4) = − π4

180
.

–End of Paper–
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