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Suggested Solutions

Problem 1.

Odd with probability P =
π − 1

4
.

It is equivalent to compute the shaded (odd) / unshaded (even) area within the unit square
separated by the boundary

x

y
= 2n+

1

2
, n = 0, 1, 2, ...

It is easy to see that the shaded area is larger than the unshaded area, since each subsquent
triangle has a shorter base. So x

y has a higher chance of being odd.

To compute the actual probability, the largest shaded region is split into two triangles of height
1 and width 1

2 and 1
3 respectively, giving the area 1

4 + 1
6 = 5

12

The rest of the shaded area are triangles of height 1 and width 1
2n+ 1

2

− 1
2n+ 3

2

= 2
4n+1 −

2
4n+3 for

n = 1, 2, ... giving a total of

P (odd) =
5

12
+

(
1

5
− 1

7
+

1

9
− 1

11
+ · · ·

)
=

5

12
+

(
π

4
− 2

3

)
=

π − 1
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Problem 2.

Let z = xy. Then note that
x−1 = xyxy = z2 =⇒ x = z−2

xyxyxy = y =⇒ y = z3

In particular {z} is a generator of G, e.g. G = ⟨z⟩ is cyclic, where z2p = z3q = 1.

So G is cyclic of order gcd(2p, 3q) =


6 (p, q) = (3, 2)
p p = q
3 p = 3, q ̸= 2
2 p ̸= 3, q = 2
1 otherwise

.
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Problem 3.

If n = 1, then the inequality is trivial as the right hand side is zero.

Now suppose n > 1. Let x1, . . . , xn be the zeros of p(x).

Clearly the inequality is true when x = xi is one of the roots, and equality is possible only if
p′(xi) = 0, i.e., if xi is a multiple zero of p(x).

Now suppose that x is not a zero of p(x). Using the identities

p′(x)

p(x)
=

n∑
i=1

1

x− xi
,

p′′(x)

p(x)

∑
1≤i<j≤n

2

(x− xi)(x− xj)
,

we find

(n− 1)

(
p′(x)

p(x)

)2

− n
p′′(x)

p(x)
=

n∑
i=1

n− 1

(x− xi)2
−

∑
1≤i<j≤n

2

(x− xi)(x− xj)
.

The last expression is simply

∑
1≤i<j≤n

(
1

x− xi
− 1

x− xj

)2

≥ 0.

So the inequality is proved.

From the last line, we see that for equality to hold for every real x, it is necessary that x1 =
x2 = . . . = xn, that is, p(x) = c(x− x1)

n for some real constant c ∈ R.

3



Problem 4.
π

a+ b

1

sin bπ
a+b

or
π

a+ b

1

sin aπ
a+b

.

By Complex Analysis. Rewrite it as

I =

∫ ∞

−∞

ebxdx

1 + e(a+b)x

We consider the contour integral over the rectangle [−R,R]× [0, 2πi
a+b ] ⊂ C going counterclock-

wise. (∫ R

−R
+

∫ R+ 2πi
a+b

R
+

∫ −R+ 2πi
a+b

R+ 2πi
a+b

+

∫ −R

−R+ 2πi
a+b

)
ebz

1 + e(a+b)z
dz

Note by change of variable z 7→ z + 2πi
a+b , we have∫ −R+ 2πi

a+b

R+ 2πi
a+b

ebz

1 + e(a+b)z
dz = −e

2πib
a+b

∫ R

−R

ebz

1 + e(a+b)z
dz

Under the limit R → ∞, the integrals
∫ R+ 2πi

a+b

R and
∫ −R
−R+ 2πi

a+b
vanishes by exponential decay

(since the integrand grows like e−az and e−bz respectively), and by the Residue Theorem we
have

I − e
2πib
a+b I = 2πi · Res

The integrand ebxdx
1+e(a+b)x has only one simple pole at z = πi

a+b with residue

lim
z→ πi

a+b

(z − πi

a+ b
)

ebz

1 + e(a+b)z
= − 1

a+ b
e

πib
a+b

Hence rearranging we obtain

I =
2πi(− 1

a+be
πib
a+b )

1− e
2πib
a+b

=
π

a+ b

1

sin bπ
a+b

.

By Real Analysis. By a substitution t = e(a+b)x the integral becomes

1

a+ b

∫ ∞

0

t−
a

a+b

t+ 1
dt

Let k = − a
a+b so that −1 < k < 0. By substitution t = u

1−u again, the integral becomes

1

a+ b

∫ 1

0
uk(1− u)−k−1du =

1

a+ b
B(k + 1,−k)

where the beta integral

B(k + 1,−k) =
Γ(k + 1)Γ(−k)

Γ(1)
= Γ(k + 1)Γ(−k).

Using the reflection formula Γ(z)Γ(1 − z) = π
sin(πz) and set z = −k we obtain the final an-

swer
1

a+ b
· π

sin πa
a+b

.
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Problem 5.

Substituting y = x+m, we can replace the equation by

y3 − ny +mn = 0.

Let two roots be u and v; the third one must be w = −(u + v) since the sum u + v + w is 0.
The roots must also satisfy

uv + uw + vw = −(u2 + uv + v2) = −n =⇒ u2 + uv + v2 = n

and
uvw = −uv(u+ v) = −mn.

So we need some integer pairs (u, v) such that uv(u+ v) is divisible by u2 + uv + v2.

We consider the family where v = qu is an integer multiple of u, then we get

u2 + uv + v2 = u2(1 + q + q2),

and
uv(u+ v) = u3q(1 + q).

Hence setting u = 1 + q + q2 we have

m =
uv(u+ v)

u2 + uv + v2
= q + q2.

Substituting back to the original quantites, we obtain the family of parameters

n = (1 + q + q2)3, m = q + q2,

which are clearly coprime, and the three distinct roots of the original equations are

x1 = 1, x2 = q3, x3 = −(1 + q)3.
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Problem 6.

Let M ≥ 0 be an integer such that a′i = ai+M ≥ 0 for all i. Then for any k, ℓ with ℓ ̸= 0,

n∑
i=1

f(k + a′iℓ) =
n∑

i=1

f((k +M) + aiℓ) = 0

by assumption, hence WLOG we may assume all ai ∈ N.

Let us define a subset I of the polynomial ring R[X] as follows:

I :=

P (X) =
m∑
j=0

bjX
j :

m∑
j=0

bjf(k + jℓ) = 0 for all k, ℓ ∈ Z, ℓ ̸= 0

 .

This is a subspace of the real vector space R[X]. Furthermore, P (X) ∈ I implies X ·P (X) ∈ I.
Hence, I is an ideal, and it is non-zero, because the polynomial R(X) =

∑n
i=1X

ai ∈ I.

Recall that R[X] is a principal ideal domain. Thus, I is generated (as an ideal) by some non-zero
polynomial Q.

If Q is constant then 1 ∈ I, which by definition of I implies f(k) = 0 for all k ∈ Z, hence f is
identically zero and we are done.

Otherwise we may assume Q has a complex zero c ∈ C. Again, by the definition of I, the
polynomial Q(Xm) belongs to I for every natural number m ≥ 1; hence Q(X) divides Q(Xm).
This shows that all the complex numbers

c, c2, c3, c4, · · ·

are roots of Q. Since Q can have only finitely many roots, we must have cN = 1 for some N ≥ 1;
in particular, Q(1) = 0, which implies P (1) = 0 for all P ∈ I. This contradicts the fact that
R(X) =

∑n
i=1X

ai ∈ I since R(1) = n ̸= 0, and we are done.

–End of Paper–
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