10th HKUST Undergraduate Math Competition — Senior Level

Suggested Solutions

Problem 1.

1
0dd with probability P = WT'

It is equivalent to compute the shaded (odd) / unshaded (even) area within the unit square
separated by the boundary
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It is easy to see that the shaded area is larger than the unshaded area, since each subsquent
triangle has a shorter base. So % has a higher chance of being odd.

To compute the actual probability, the largest shaded region is split into two triangles of height
1 and width % and % respectively, giving the area i + % = 1—52
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The rest of the shaded area are triangles of height 1 and width Qni T —

n=1,2,... giving a total of ’
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Problem 2.

Let z = xy. Then note that
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Tyryry =y =>y = 2°

In particular {z} is a generator of G, e.g. G = (z) is cyclic, where 2P = 231 = 1.
6 (p.q) =(3,2)

pP=q

p=3,q97#2
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otherwise

So G is cyclic of order ged(2p, 3q) =
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Problem 3.
If n = 1, then the inequality is trivial as the right hand side is zero.
Now suppose n > 1. Let x1,...,z, be the zeros of p(z).

Clearly the inequality is true when = = x; is one of the roots, and equality is possible only if
P (x;) =0, i.e., if x; is a multiple zero of p(x).

Now suppose that z is not a zero of p(x). Using the identities
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we find
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The last expression is simply

So the inequality is proved.

From the last line, we see that for equality to hold for every real z, it is necessary that x; =
g = ...= Ty, that is, p(x) = ¢(z — x1)" for some real constant ¢ € R.



Problem 4.
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By Complex Analysis. Rewrite it as
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We consider the contour integral over the rectangle [—R, R] x [0, 312] C C going counterclock-
wise. . .
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Note by change of variable z — z + 3—%, we have
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Under the limit R — oo, the integrals f R Ter and f:g | 2xi vanishes by exponential decay
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(since the integrand grows like e and e~% respectively), and by the Residue Theorem we

have it
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The integrand % has only one simple pole at z = 2% with residue
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Hence rearranging we obtain
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By Real Analysis. By a substitution ¢ = (@97 the integral becomes

Oot a+b
a+b/ t+1

Let k = — ;% so that —1 <k < 0. By substitution ¢ = % again, the integral becomes
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where the beta integral

I'(k+ 1)I(—k)

Blk+1,-k)= —————=T(k+ )I'(—k).
Using the reflection formula T'(2)['(1 — 2) = Sinaz) and set z = —k we obtain the final an-
swer
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Problem 5.

Substituting ¥y = x + m, we can replace the equation by
y® —ny +mn = 0.

Let two roots be u and v; the third one must be w = —(u + v) since the sum u + v + w is 0.
The roots must also satisfy

uwv 4 uw + vw = —(u? +uv +1?) = —n = v fuw +0v? =n

and
wow = —uv(u +v) = —mn.

So we need some integer pairs (u,v) such that uv(u + v) is divisible by u? + uv + v2.
We consider the family where v = qu is an integer multiple of u, then we get

w? +uv + 02 = (1 +q+ %),

and
uv(u +v) = udq(1+q).

Hence setting u =1+ g+ q2 we have

uv(u+v)
w2 4 uw + 0?2

=g+
Substituting back to the original quantites, we obtain the family of parameters
n=0+q¢+¢)°, m=q+¢,

which are clearly coprime, and the three distinct roots of the original equations are

r1=1, x9=¢% x3=—(14+¢q)>



Problem 6.
Let M > 0 be an integer such that a; = a;+ M > 0 for all . Then for any k, ¢ with £ # 0,

S Fk+die) =" f((k+ M) +ail) =0
i=1

i=1
by assumption, hence WLOG we may assume all a; € N.

Let us define a subset Z of the polynomial ring R[X] as follows:

T:=qP(X)=> b;X/:) bf(k+j6)=0 forallk,leZl#0
j=0 j=0

This is a subspace of the real vector space R[X]. Furthermore, P(X) € Z implies X - P(X) € 7.
Hence, 7 is an ideal, and it is non-zero, because the polynomial R(X) =>"" | X% € Z.

Recall that R[X] is a principal ideal domain. Thus, Z is generated (as an ideal) by some non-zero
polynomial Q.

If @ is constant then 1 € Z, which by definition of Z implies f(k) = 0 for all k € Z, hence f is
identically zero and we are done.

Otherwise we may assume @ has a complex zero ¢ € C. Again, by the definition of Z, the
polynomial Q(X™) belongs to Z for every natural number m > 1; hence Q(X) divides Q(X™).
This shows that all the complex numbers

C, C27 63, C4, tee

are roots of Q. Since @ can have only finitely many roots, we must have ¢V = 1 for some N > 1;
in particular, Q(1) = 0, which implies P(1) = 0 for all P € Z. This contradicts the fact that
R(X)=>",X%¢eTsince R(1) =n # 0, and we are done.

—~End of Paper—



