
Review

1 Functions.

1.1 Sets.

Recall a set is a collection of objects called the elements of the set.

Examples:

· The collection { 0, 1, 2, 3, . . . } of zero and the positive integers
is a set. For easy referral we call it the set of natural integers,
and denote it in writing as N.
· The collection { 0, ±1, ±2, ±3, . . . } of all integers is a set. It
is denoted it in writing as Z.
· The collection { fractions p

q | p, q integers } of rational numbers
is denoted in writing as Q.

· The collection of (real) decimal numbers such as

13

11
= 1.181818 . . . ,

√
2 = 1.4142135 . . . , π = 3.14159 . . .

is the set of real numbers. It is denoted as R.

· A non-numerical example of a set is the collection of McDonalds
menu items

M = { chicken-nuggets, big-mac, fish sandwich, . . . , mcflurry }



Functions are used to express relationships among variables.

1.2 Ingredients of a function.

• Input set D • Output set C • Rule f

A function f is a rule which assigns to each element of the input set
D, an element f (x) in the output set:

x ∈ D
input−−−−−−→ rule f

output−−−−−−−→ f (x) ∈ C

Notation:

• The input set is call the domain.

• The output set is call the codomain.
The precise set of outputs is called the range of the function.

• The output element f (x) is called the value of the function f
at input x.

Example: Take

· Domain (input set) to beM, the set of McDonald menu items.

· Codomain (output set) to be the set N of natural integers.

· function to be the price function P which is the price (in cents)
of a menu item

x ∈M input
=======⇒ Price function P

output
========⇒ P (x) ∈ N

chicken-nugget
price−−−−−−→ P (chicken-nugget)

So, McDonalds’ menu table is a function!



2 Ways to describe functions.

•Verbally description in words

•Numerically table of values

•Algebraically formula

•Graphically by a graph

Verbal example: Take:

· Domain to be the alphabet A = { A, B, C, . . . , Y, Z }
· Codomain to be the natural integers N.
· rule p to be the position in the alphabet; so,

p(B) = 2, p(L) = 12, p(Y ) = 25, etc

Question: What is the range set (precise set of values) of the position
function?

Numerical/tabular example: Take:

·Domain D to be the set URL of webnames.

For example www.facebook.com ∈ D (URL).

·Codomain to be the set I of all possible internet IP–addresses:
aaa.bbb.ccc.ddd where each tiple is between 0 and 255 = 28 − 1

· rule f to be the ‘internet domain function’ which takes a URL
x and gives the IP-number of x. For example:

f (www.facebook.com) = 173.252.91.4

f (www.ust.hk) = 143.89.14.2

Each time we enter a URL into a browser, it goes to the internet to
lookup the IP-address of the URL and then retrieves information
stored on the machine with IP-address f (URL).



One way for hackers to disrupt the internet is by attacking the
internet machines which are the repository for the function/table of
URL to IP-addresses.

Examples of functions given algebraically: Take:

(1) f : R −→ R

x
f−−−−→ y = f (x) = x2 − 4

(2) g : R −→ R

x
g−−−−→ y = g(x) =

1

1 + x2

(3) Consider the rule:

x
h−−−−→ y = h(x) =

1

x− 3

Since division by 0 is not allowed, the rule must avoid x = 3, so
the domain must be the set of numbers NOT equal to 3. This
set can be written in several ways such as:

{ x ∈ R | x 6= 3 } or R − { 3 }



Example of a function given graphically:
Graph of the closing stock price of FaceBook during 2012-2014:
Domain is the set of days. Codomain is R.

3 Vertical line test

Question: When is the set of points in the plane; for example the
line x + y = 5, or the circle (x− 2)2 + (y − 2)2 = 52 the graph of
a function?

Vertical Line Test: A set S in the plane is the graph of a function
if each vertical line meets S in at most one point.

(1) The graph of the line x + y = 5 is the graph of a function. The
function can be given algebraically as y = f (x) = 5− x.

(2) The graph of the circle (x− 2)2+ (y− 2)2 = 52 is not the graph
of a function. Vertical lines x = b for −3 < b < 5 meet the circle



in two points. When we solve for y in terms of x we get

(y − 2)2 = 25− (x− 2)2

(y − 2) = ±
√
25− (x− 2)2

y = 2 ±
√
25− (x− 2)2

(3) The graph of the parabola y−x2 = 5 is the graph of a function.
The function can be give algebraically as y = h(x) = 5 + x2.

(4) The graph of the parabola y2 − x = 5 is the not the graph of a
function. When we solve for y in terms of x we get

y2 = 25− x

y = ±
√
25− x

Basic Functions

4 Basic Functions.

Some basic functions given by a formula rule are:

• Linear functions: y = f (x) = mx + b

• Polynomials:

P (x) = amxm + amxm + · · · + a2x
2 + a1x + a0

• Rational functions:

r(x) =
P (x)

Q(x)
, where P (x) and Q(x) are polynomials

• Power functions: Functions of the form f (x) =
√
x , x

1
3 , x−

5
7 , . . .

• Trigonometric functions: sin(x), cos(x), tan(x), . . .

• Exponential functions: 10x, 2x, , 3x, . . .



4.1 Linear functions.

f (x) = mx + b

• Very simple rule (easy to compute)

• Graph is a line:

· slope is m
· point (0, b) is on graph, i.e., y-intercept is b

• Often used to approximate more complicated functions.

Example: CO2 levels in the atmosphere

Year CO2 level (parts/million) graph point
1980 338.7 p1 = (1980, 338.7)
1988 351.5 p2 = (1988, 351.5)
1996 362.4 p3 = (1996, 362.4)
2004 377.5 p4 = (2004, 377.5)

The four points do not lie on a line: The 4 input years increase by
8 years each time, but the 3 differences in the CO2 level increased
by 12.8, 10.9, and 15.1 which changed from 8-year period to 8-year
period to 8-year period.



Graphs of the linear function L(x) = mx + b for various slopes m
and y-intercept b
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The best “least squares” line is the choice of slopem and y-intercept
b so the function

y = L(x) = mx + b

has the property that for our four table values p1 = (x1, y1), p2 =
(x2, y2), p3 = (x3, y3), and p4 = (x4, y4), the ‘sum of the squared
differences’:

‘Error’ = ‘Error at point p1’ + ‘Error at point p2’

+ ‘Error at point p3’ + ‘Error at point p4’

=
(
( mx1 + b ) − y1

)2
+

(
( mx2 + b ) − y2

)2

+
(
( mx3 + b ) − y3

)2
+

(
( mx4 + b ) − y4

)2

is the smallest possible.



Choice of slope m and intercept b
Error at

point p1

Error at

point p2

Error at

point p3

Error at

point p4

Sum of

errors at

4 points

( 1.6000 , -2829.3 ) (yellow) 0.00 0.00 3.61 0.16 3.77

( 1.8875 , -3405.1 ) (green) 42.25 17.64 0.00 0.00 59.89

( 1.6167 , -2862.3 ) (blue) 0.00 0.02 4.69 0.00 4.71

( 1.7000 , -3015.0 ) (black) 151.29 171.61 249.64 204.49 777.03

( 1.5912 , -2812.2 ) (red) 0.13 0.19 1.95 0.95 3.22

Calculus can be used to find the ‘best’ choice of slope m
and intercept b. It is: m = 1.5912 , b = −2812.24 and

y = L(x) = 1.5912 x − 2812.24

= 1.5912 (x − 1980 ) + 338.4 .

The example best least squares prediction for the CO2 levels
in 2020 is

L(2020) = 1.5912 ( 2020 − 1980 ) + 338.4

= 402.05 parts/million

4.2 Exponential functions.

An exponential function is defined in terms of a positive base b. For
example, base 10. We know how to compute:

· Integer powers of 10;
103 (thousand), 106 (million), 10−9 (nano)

· Fractions powers of 10:
√
10 = 3.1622 . . . , 10

1
4 = 1.7782 . . .

It is possible to define the power 10x for any number x.
For any positive base b, it is posible to define the power bx. The rule
which takes input x and gives output bx is the exponential function.
The function/rule is written as

expb .



For example, some calculators have a button label exp10.

Properties of the exponential functions are:

(i) expb(1) = b

(ii) expb(x + y) = expb(x) expb(y) (turns addition into multiplication)

(iii) expb is a continuous function

(iv) (bx)y = bxy

Property (iii) means if we have a sequence of inputs x1, x2, x3, . . .
which “converge” to a number x, then the sequence of outputs
bx1, bx2, bx3, . . . converge to the output bx. This property is very
inportant. There are ‘useless’ functions which satisfy (i) and (ii)
but not (iii).

5 One-to-one and onto functions.

Two important properties which a function may or may not have
are:

one-to-one, and onto

5.1 One-to-one

A function f is one-to-one if

different inputs produce different outputs

We express this mathematically as saying if inputs a and b are not
equal, then the outputs f (a) and f (b) are not equal.

a, b ∈ D (domain), and a 6= b ==⇒ f (a) 6= f (b) (in codomain)

This is the same as:

a, b ∈ D, and f (a) = f (b) ==⇒ a = b



Examples:

• A linear function
L(x) = mx + b

with slope m 6= 0 is one-to-one. Suppose x1, and x2 are two
inputs which give the same output: L(x1) = L(x2). Then

L(x1) = L(x2)

mx1 + b = mx2 + b , so

mx1 = mx2 , now divide by m 6= 0

x1 = x2 .

Conclude a linear function L(x) = mx + b with non-zero slope
is one-to-one.

• A linear function L(x) = 0 x + b with slope 0, is a constant
function. Such functions are not one-to-one.

Horizontal line test for graph functions in the plane:

If a function f is described as a graph in the plane, then f is
one-to-one precisely when each horizontal line in the plane meets
the graph in at most one point.

If a horizontal line y = b meets the graph in two or more points
p1 = (x1, b) and p2 = (x1, b), then f (x1) = f (x2) with x1 6= x2, so
the function is not one-to-one.
Example: sin(x) is not one-to-one, (x3 − 1)3 + 1 is one-to-one
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5.2 Onto

The range of a function is the complete set of its values.

Examples:

1. The sin function has domain R. The complete set of its values
is all numbers between -1 and 1.

2. The function y(x) = x2 has domain R. The complete set of its
values is numbers y ≥ 0.

3. The function y(x) = x3 has domain R. The complete set of its
values is R

For a particular function f with domain D, we usually have some
choice in what we call the codomain. In each of the examples, above,
we could take the codomain to be R, a larger set than the range.

A function f with domainD is onto a codomain C if the codomain
equals the range of the function.

Examples:

1. Consider the sin function, with domain R.
· If we take the codomain to be R, then the sin function is not
onto the codomain.

· If we instead take the codomain to be C = { −1 ≤ y ≤ 1 },
then the function is onto the codomain.

2. Consider the function y(x) = x2, with domain R.
· If we take the codomain to be R, then the function is not onto
the codomain.

· If we instead take the codomain to be C = { 0 ≤ y }, then
the function is onto the codomain.



3. Suppose D is a collection of at most 300 people. Take the set C
to be the the dates of the year, so

C = { Jan 01, Jan 02, . . . , Dec 31 }
Let B : D −−−→ C, be the rule which takes input (person) x
to their birthday B(x).

Question: For the (365 element) codomain C, why cannot the
function B be onto?

A function f : D −−−→ C is onto if:

For any y ∈ C, there is a a ∈ D, with y = f (a)

In words, any element of the codomain appears as a output/value
of the function.

6 Inverse functions

When a function f : D −−−→ C is both one-to-one and onto, then
one can “reverse” the function to get a function g : C −−−→ D.
The roles of the domain and codomain have are reversed, and we
think of the the process g as undoing the function f .

Examples:

1. A linear function L(x) = mx + b from the domain R to the
codomain R, with non-zero slope m, is one-to-one and onto.
The rerevse is obtained by solving for x in terms of y. It is the
rule

R(y) =
1

m
( y − b ) .



2. The rule S(x) = x2 from the domain R to the codomain R is
neither one-to-one, nor onto:

· Not one-to-one since f (x) = f (−x), so different inputs can
produce same output.

· Not onto since the outputs (x2) are always ≥ 0, and so cannot
take on any of the negative numbers in the codomain.

3. The same rule S(x) = x2 from the domain R≥0 to the codomain
R≥0 is both one-to-one and onto. The reverse function is the
square root function:

R(y) =
√
y , the positive square root of y.

6.1 Logarithm

When b > 1, the exponential function expb : R −−−→ R>0
(note: R>0 means the positive numbers) is one-to-one and onto
(the positive numbers). The inverse function is called the logarithm
to base b, and denoted logb.
Example:
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Inverse functions



If the domain and codomain sets of a one-one and onto function
f : D −−−→ C are sets of real numbers, the graph of the inverse
function R is obtained from the graph of f by swapping coordinates

( a , b ) ←→ ( b , a ) .

Geometrically the graph of the ineverse function R is obtained from
the graph of f by reflection across the y = x line.

6.2 Logarithm formula between different bases

The general formula relating the functions logb and loga is:

loga(x) =
logb(x)

logb(a)
.



7 Function composition

7.1 Definition of function composition

Suppose:

• f is a function with domain D and codomain C, so

D f−−−−→ C ,

and

• g is a function with domain C and codomain B, so
C g−−−−→ B .

We can form the composite function g ◦ f , which is a function
with domain D and codomain B
input x ∈ D f−−−−→ f (x) ∈ C g−−−−→ output g(f (x)) ∈ B

Example: The set of real number greater than or equal to zero is
denoted R≥0. Take

R≥0
b(t) =

√
t−−−−−−−−−−→ R≥0 (which is inside R)

R≥0
c(u) = 1

1+u−−−−−−−−−−→ R≥0
The two functions b ◦ c and c ◦ b both make sense:

(b ◦ c) (u) = b(c(u)) = b(
1

1 + u
) =

√
1

1 + u
is a function from R≥0 to R≥0

(c ◦ b) (t) = c(b(t)) = c(
√
t ) =

1

1 +
√
t

is a function from R≥0 to R≥0



7.2 Associativity of composition.

If a, b, and c are three functions, the two functions

(a ◦ b) ◦ c and a ◦ (b ◦ c)
are equal. Their value at an input u is:

a(b(c(u))) .

8 Basic changes to the graph of a function

Suppose R f−−−−→ R is a function with domain and range R, and
a, b, c are (fixed) numbers. We can consider the functions:

a f (x) , f (bx) , and f (x− c) .

The relation of the graphs of these three functions to the graph of
the original function f is the following:

• The graph of af (x) is obtained by vertically scaling the graph
of f (x) by a factor of a.

• Assume b 6= 0. The graph of f (bx) is obtained by horizontally
scaling the graph of f (x) by a factor of 1b.

• The graph of f (x− c) is obtained by a horizontal rightward
translation of the graph of f (x) by c.



Example:
We take f (x) = x3 − 5x + 9. The graphs of

(0.5)f (x) , f (
x

0.8
) , and f (x− 2)

are:
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