Applications of exponentials and logarithms.

We give some uses of exponentials and logarithms.

Exponentials and rate of change.

The exponential function y = e has the remarkable property that its derivative is itself.

dy
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This equation, relates the derivative function f]—?]{ to the original functions .

[t is called a differential equation.
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For the function y = e"', with k a constant, we have d—i’ = ¥ . k; so the function y satisfies

the differential equation:
dy
dt

This differential equation is extremely useful in expressing how certain quantities change in time.

Examples:

e Population growth.  The growth of many organisms such as animals, vegetation, viruses,
bacteria, etc, if provided with unlimited resources will grow (in time) at a rate proportional
to their existing population. This can be written mathematically as the population function
P = P(t) satisfies the differential equation:

dpP
P'(t) = kP(t) orin different notation e kP,

with k£ a constant.

e Radioactive decay.  Unstable radioactive elements have been observed to decay. Let A(t)
be the amount of the radioactive substance at time ¢. Then, it has been observed A satisfies
the following:

A
A'(t) = —kA(t) or in different notation Cfl_t = —kA.
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The derivative of the function y = e ", where B is a constant, is

% — Bl B so it satisfies the differential equation

dy
=2 _ By.
dt Y



: Bt _ Bt dz _
[f we multiply e”" by a constant D to get z = De” ", then & =

DePtB = BDeBt = B z; so z = Dy also satisfies the same
differential equation as y: the derivative function equals B times
the function.

Fact. There are infinitely many solutions of the differential equa-
tion % = BB but they all have the form

Yy = DBt

If the value y(0) of y at ¢ = 0 is known, then there is a unique
solution given as

y(t) = y(0) Pt

Examples:

e Population growth. A bacteria culture:

- Initally contains 100 cells, and grows at a rate proportional to its size.

- Has grown to 420 cells after 1 hour.

(i) Determine the differential equation satisfied by the population function P.
We have P(t) = P(0)eB" = 100eP! satisfies P'(t) = BP(t). We need to find B.
420
420 = P(1) = 100eP' = 100e® so B = mm)

The function P therefore satisfies the differential equation

dP

- In(4.2) P, and P(t) = In(4.2) @1,

(ii) Determine the number of bacteria and rate of growth at time ¢ = 3 hours. ~ We have

P| = P(3) = 100 &"@23 = 7409 cells (rounded from 7408.79)
t=3

dP

E| = 1n(4.2)P‘ = 10632.2... cells/hr
t=3

t=3



(iii) Determine when the population will reach 10,000 cells. ~ We solve
10000 = 100 ™42

to get
10000
In(4.2)t = In (——
n(4.2) n( 100 )
1 10000

— 3.20... hours
In(4.2) " (oo ) o

e Radioactive decay.  The differential equation for radioactive decay is
dA
dt

In terms of the initial amount A(0) at time ¢ = 0, the solution is A(t) = A(0)e ™. An
important observation is the following:

= —kA.

In(2 . In , In L1 1
Alt + “]i Dy = A e D) — Ayttt — 4) et = SAW)
This means the amount at time ¢ + M is half the amount at time ¢. The number @ is

called the half-life of the substance.

e Carbon dating objects using radioactive decay. ~ The carbon isotope Cyy is an unstable

radioactive form of carbon. It has a half-life of 5730 years. This means, if ‘fi—’? = —kAis the
differential equation satisfied by the amount A(t) of Cy4 present, then
In(2 In(2 n
5730 years = % so k = 5117(33 and A(t) = A(0) e FR

If we have the remains of an ‘ancient” organism, and it is known (by comparing the amount of
stable Cya, to the amount of Cy4), that 74% of Cy4 remains from the time when the organism
was alive, estimate the age.



We have:
0.74 A(0) = A(t) = A(0)e 50

_In(2)

5730

t = — In(0.74) wo 2500 years (rounded from 2484.7...)
n

Continuous compound interest.

Funds deposited in a bank receive interest. The amount of interest
is described in two parts:

e The interest rate paid per year.

e How often the interest is compounded.

Examples:
If a bank pays 5% interest per year, and the interest is compounded once a year, then

A starting amount Ay after one year growsto Ay(1+ 0.05).
A starting amount Ay after N years grows to  Ag(1 + 0.05)".

If the 5% interest is compounded p times (periods) per year, then

the interest paid per period is 57%, and.:
, 0.05,
A starting amount Aj after one year growsto Ay ( 1+ ) .
, 0.05 | pn
A starting amount Ag after N years growsto A ( 1+ ) .



Semiannual compound interest is when p = 2, quarterly compound interest is p = 4, and
daily compound interest is p = 365.

Continuous compounding is when we let p go to infinity.

If  is the annual interest rate, it happens that:

e,
lim ( 1+ —)p exists.
pP—00 p

To see the limit exists and find its values, we set y, = (1 + é)p . Then

In(1+=
In(y,) = 1n((1+f)p> = pln(l—f—z) = M
p p P
We consider the function f(x) = In(1+rz ). By the chain rule, the derivative is f'(z) = 5=,

and so f'(0) =r). If we go back to the definition of derivative, this means:

f(O+h)— f(0) " In(14rh) —In(1+0) I In(1+rh)

_ gl I _ _
r=f0 = ln 2 = im 7 e —

If we set h = zl)’ we see that as p — oo, that A — 0, and so

In (1+% In(1 + rh
lim M = lim H(—M‘)
P—00 ]_7 h—0

= f(0) = r.

So, as p — 00, we see In(y,) has limit r. We can take exponentials to get y, — € as p — oo.
So,

. r .
phﬁr(l)l<> (1+]—))p = e .

Summary:

Ay compounded continuously at annual rate r grows to Age” after one year.



Polynomial growth vs exponential growth.

Consider the two functions

fl) = 2° and  g(x) = 2*.

If we increase the input from z to 2 + 1, we see the ratios Z&41 and £etl)

) g(m) ME
fla+1) 20 glz+1)  (x+1)?2 1
fm - ™ T e

Increasing the input to 2* by 1 results in a doubling of the output, while increasing the input to
2% results in a multiplication of the output by ‘only’ (1 + %)2 What we can conclude from this
is that:

More generally, if p(z) is ANY polynomial and 0" is any exponential with b > 1, then
lim p(z)

= 0.

Exponential grwoth is always much much faster than polynomial growth.



