
Modular numbers and Error Correcting Codes

• Introduction

• Modular Arithmetic

• Finite fields

• n-space over a finite field

• Error correcting codes

• Exercises

§ Introduction.

Data transmission is not normally perfect; errors can be introduced be-
cause of misread data or poor transmission conditions. The purpose of
error-correcting codes is to eliminate these errors, allowing near-perfect
transmission of data under imperfect conditions. For example, a scratched
LP record, with no error correction, sounds poor. In contrast, a scratched
CD still sounds perfect, because the CD player can tell that the scratched
data is wrong and reconstruct the correct data as long as the scratch isn’t
too long. Other applications include satellite transmission, in which the
signal is very weak and is likely to include errors; and computer networks,
in which error correction allows for faster data transmission while avoiding
the decrease in reliability that it would normally cause.

The theory of error-correcting codes uses techniques from many different
areas of mathematics, but its basis is in linear algebra. To develop this
theory, we need to use linear algebra over sets other than the real numbers
R. Except for the geometric transformations, the only properties of the
real numbers we have used are addition, subtraction, multiplication, and
division. Therefore, we can do linear algebra over any set on which we have
these operations. Any such set is called a field.

§ Modular Arithmetic.

For every positive integer m larger than 1, we can form what is called
a modular number system. In the simplest case of m = 2, the modular
number system is nothing more than the notion of even and odd. This
system of number is sometimes called the binary numbers with the even

1



numbers denoted as 0 and the odd numbers denoted as 1. We are all very
familiar with the rules for addition and multiplication of binary numbers
numbers. They are

+ 0 1

0 0 1
1 1 0

• 0 1

0 0 0
1 0 1

The idea of modular arithmetic is the following. We divide up all the
integers into m groups according to what their remainder is when we divide
by m. For instance, when m = 3, the three groups of integers are

the integers with remainder 1 {. . . ,−8,−5,−2, 1, 4, 7, 10, . . . },
the integers with remainder 2 {. . . ,−7,−4,−1, 2, 5, 8, 11, . . . },
the integers with remainder 0 {. . . ,−9,−6,−3, 0, 3, 6, 9, . . . }

For convenience we label the three sets as 13, 23 and 03 and call these three
sets the integers 1, 2 and 0 modulo 3. In this notation, the even integers
would be 02 (the integers 0 modulo 2), while the odd integers would be 12

(the integers 1 modulo 2). The modular number system for the integer 3
consists of the sets 13, 23 and 03 with addition and multiplication defined
by

+ 03 13 23

03 03 13 23

13 13 23 03

23 23 03 13

• 03 13 23

03 03 03 03

13 03 13 23

23 03 23 13

An example of what this means; if a is an integer with remainder 1 when
divided by 3 (so a ∈ 13), and if b is an integer with remainder 2 when
divided by 3 (so b ∈ 23), then the sum a+ b will be in the set 03, i.e. a+ b is
divisible by 3. Similary, the product a · b will be in the set 23. The modular
number system for 3 has just three elements. The modular number 03 is
zero in the sense that when we add it to any other modular number a (13,
23 or 03), we get a. In a likewise manner, the modular number 13 has the
property that when we multiply any modular number b by 13, we get back

2



b. The addition and multiplication tables for the modular number system
for m = 4 are

+ 0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

• 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

Here, we have removed the subscript 4 for convenience. The entries in the
addition table are very regular. There is a cyclic shift as we move from row
to row. The entries in the multiplication table are less predictable. Note
that 2 times 2 is 0, so the m = 4 number system is somewhat strange in
that two nonzero numbers can multiply up to zero.

Question. The modular numbers for m = 12 and m = 24 are very com-
monly used by people throughout the world. How?
Answer. Clocks ‘run’ on either the modular system for m = 12, twelve
hours, or m = 24, 24 hour clocks.

The multiplication table for the modular number system for the integer
m = 7 is

• 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6
2 0 2 4 6 1 3 5
3 0 3 6 2 5 1 4
4 0 4 1 5 2 6 3
5 0 5 3 1 6 4 2
6 0 6 5 4 3 2 1

For any modular number system, the familiar properties of

COMMUTATIVITY a + b = b + a
a · b = b · a

ASSOCIATIVITY a + (b + c) = (a + b) + c
3



a · (b · c) = (a · b) · c
ZERO a + 0 = a

ONE a · 1 = a

DISTRIBUTIVITY a · (b + c) = a · b + a · c

are all valid. The negative of a modular number such as

23 = {. . . ,−7,−4,−1, 2, 5, 8, 11, . . . }
is the modular number which as a set is equal to

13 = {. . . , 7, 4, 1,−2,−5,−8,−11, . . . }.
The biggest difference between modular numbers systems and the more
familar real or complex number systems was already mentioned in the above
paragraph. In some modular systems, eg those for the integers 4 or 6 or
8 or 9, it is possible for two nonzero numbers to multiply to zero. For
example, in the modular system of the integer 15, we have 615 · 1015 = 015.
In this setting, neither of the equations 615 ·x = 115 nor 1015 ·x = 115 have
solutions. In other words, both the modular numbers 615 and 1015 do not
have inverses in the modular 15 system. To see why this is so, suppose that
x = a is a solution to 615 ·x = 115. Multiplying both sides of 615 ·1015 = 015

gives
a · (615 · 1015) = a · 015 = 015

(a · 615) · 1015 = 015

1015 = 015

This is not true, so the assumption that 615 · x = 115 has a solution (615

has an inverse in the modular numbers) is wrong.

However, if we look at the multiplication table for both the modular 3
and modular 7 systems, we see that in these two number systems, every
nonzero number has an inverse. In the modular 7 system, the numbers 27,
47 are inverses of each other. The numbers 37, 57 are inverse of each other.
The numbers 17 and 67 are are their own inverses.

27 · 47 = 17 37 · 57 = 17 17 · 17 = 17 67 · 67 = 17

4



§ Finite fields.

A modular system in which every nonzero number has an inverse is called
a finite field. A field is any number system in which the one can add and
multiply two numbers with the commutativity, associativity, zero, one, dis-
tributivity properties and in which every nonzero number has an inverse.
The familar real numbers are a field. The complex numbers are another ex-
ample of a field. The real numbers are denoted R and the complex numbers
are denoted C. The rational numbers (denoted Q) are yet another example
of a field. The modular number system for the integer 3 is denoted F3,
while the modular number system for the integer 7 is denoted F7. Modular
number system for the integer 2 is also a field and denoted F2. The fields
R, C, Q are fields with infinitely many elements/numbers. The fields F2,
F3 and F7 are fields which have only a finite number of elements/numbers
in them.

Finite Field Theorem. If p is any prime integer, the modular numbers
for p is denoted Fp. These modular numbers form a finite field with p
elements/numbers.

To see why the modular numbers Fp form a field, we must find a way to
show that any nonzero modular number has an inverse. One easy way when
the prime p is not too large is to write out the complete multiplication table
for Fp and then check that every nonzero modular number has an inverse.
When the prime p writing out the multiplication table is extremely tedious.
Luckily it is not necessary. There is an algorithm called the Euclidean
algorithm which can be used to determine the inverse. For more about
this, see the appendix.

§ Linear algebra over a finite field.

Regular n-space (written in row form) Rn consists of the row ‘vectors’
v = (x1, . . . , xn). That is Rn is the set of all possible size n row vectors,
with the coordinates xi being real numbers. Complex n-space, written Cn

is the set of all row vectors w = (z1, . . . , zn), where the coordinates zi are
complex numbers. Similary if the coordinates are just rational numbers,
we speak of rational n-space. Having just described finite fields Fp, we can
now speak of n-space Fn

p over a finite field. It consists of all the row vectors
5



v = (x1, . . . , xn) with the condition that the coordinates belong to the finite
field Fp. Note that n-space over a finite field has just finitely many vectors.
Indeed, each of the n coordinates can be any of p possible things; therefore
Fn

p consists of pn vectors. For example, 7-dimensional space over the binary
field F2 has 27 = 128 vectors. For any n-space over a field:

• We add two vectors v and v′ by adding their corresponding coordi-
nates.

• We multiply a vector v by a scalar α in the field by multiplying all
the coordinates of v by α.

In a similar manner, we can talk about an m× n matrix with entries in a
finite field. An m × n matrix A is a linear transformation. If we think of
our m-space as being row vectors, then A takes row vectors in Fm

p to row
vectors in Fn

p . If we think of our n-space as being column vectors, then A
takes column vectors in Fn

p to column vectors in Fm
p . Over the finite field

F11, the matrix

A =




4 1
6 7
9 10




is the linear transformation which would take the the column vector
[

y1

y2

]

to

A ·
[

y1

y2

]
=




4 · y1 + 1 · y2

6 · y1 + 7 · y2

9 · y1 + 10 · y2


 .

As another, example of matrices over finite fields, we can check that in
the finite field F5

[
1 2
3 4

]
·
[

3 1
4 2

]
=

[
1 · 3 + 2 · 4 1 · 1 + 2 · 2
3 · 3 + 4 · 4 3 · 1 + 4 · 2

]
=

[
1 0
0 1

]
.

that is the two matrices on the left side are each other’s inverses.

§ Error correcting codes (The first Hamming code)
6



As an example of the use of matrices over finite field, we discuss the
first Hamming code. Data transmitted or stored electronically is usually
done so in packets of 1’s and 0’s. The packet (word) size is usually of fixed
size. For instance, a word size of 4 would be able to take on 16 word states
ranging from 0000, 0001, 0010, . . . to 1111. Imagine now sending words
of length 4 over a serial communications channel and that there is some
probability that each bit we transmit will be changed either from 0 to 1 or
vice verse. If the probability is .95 that a bit is transmitted successfully
over a communication channel, then the probabilty that a word consisting
of 4 bits is transmitted successfully is

sending 4 bits with no errors = .95 · .95 · .95 · .95 = .8145

One way to improve things is to add an extra check or parity bit. Adding
a check bit means sending a 5th bit which is the sum (in the binary field
F2 of the original 4 bits. It allows the receiver to check whether or not an
error has occurred during transmission. If the received 5 bits do not have
the property that they add up to 0, then at least one bit, possibly more,
was altered during transmission. Note that this scheme has the drawback
that if 2 bits were changed the receiver would be unable to recognize this
error. The probability of various possibilities for the transmission of 5 bits
(assuming the .95 as before) are

sending 5 bits with no errors .955 = 0.7738
sending 5 bits with at most one error .955 + 5 · .954 · .05 = .9774
sending 5 bits with two or more errors 1− .9774 = .0226

While adding a parity check bit allows a receiver to detect some errors,
it does not allow the receiver to fix things. The first Hamming code is a
way of coding a 4 bit word into a 7 bit word so that if just one error occurs
then the receiver will not only be able to detect the error but the receiver
will be able to correct the error. Such a method/code is called an error
correcting code. Since

.8145 = probablity of transmitting 4 bits with error

.9556 = probablity of transmitting 7 bits with at most one error
7



It is more reliable to code a 4 bit word into a 7 bit word and then send
the 7 bit word. In order to measure the ability of a code to correct errors,
we define the Hamming distance between two vectors ~v1 and ~v2 in Fn

2 to
be the number of bits which are different in the two vectors. This is thus
the number of errors which would need to be made for a signal to be trans-
mitted as ~v1 and read as ~v2. There are 27 = 128 possible 7 bits words, or
equivalently, there are vectors in 128 vectors in the 7-dimensional vector
space F7

2. The number of 7 bit words within a Hamming distance of 1 or 0
from a word is 1+7=8.

Question. Is there some clever way/process to code a 4 bit word into a 7
bit word?
Answer. The first Hamming code.

The first Hamming code is a 4-dimensional subspace W of F7
2 with the

property that the Hamming distance between any two vectors in W is at
least 3. The description of the subspace W is that it is both the kernel of
the ‘testing’ matrix

T =




0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1




as well as the image of the ‘encoding’ matrix

E =




1 1 0 1
1 0 1 1
1 0 0 0
0 1 1 1
0 1 0 0
0 0 1 0
0 0 0 1




The columns of the encoding matrix E are obtained by finding a basis for
the kernel of T via reduced row echelon form.

To code a 4 bit word ~v =




a
b
c
d


 into a 7 bit vector in the Hamming

code (subspace W) we multiply ~v into the encoding matrix E to get the
8



encoded/transformed vector ~w = E(~v) = E · ~v. We then transmit ~w via
our communication channel.

At the other end of the communication channel, a person who receives a
7 bit word encoded ~w in this fashion, can first multiply ~w into the testing
matrix T to check if there have been any errors in transmission.

• If ~w is received with no errors, then T · ~w will be equal to




0
0
0


 since the

Hamming subspace is the kernel of the testing matrix T .
• If ~w has just one error in it, then the size three column vector T · ~w has

the remarkable property, which we cannot fully explain here, that it tells
us (in binary) which column the error is located.

To decode an encoded vector, one uses a decoding transformation D :
F7

2 −→ F4
2 which changes the 7 bit encoded word back to the original 4 bit

word. The decoding matrix must satisfy the property that

D · E = Identity 4× 4 matrix

For the first Hamming code, the decoding matrix is

D =




0 0 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1




As an exercise, check that D · E = I4×4.

Example: Suppose we want to transmit the 4 bit word ~v =




0
1
1
0


. Compu-

tation of ~w = E(~v) gives ~w = E ·~v =




1
1
0
0
1
1
0




. If during transmission, the code

9



word is altered to ~w′ =




1
1
0
0
1
0
0




when we multiply it into the testing matrix

T we get




0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1


 ·




1
1
0
0
1
0
0




=




1
1
0




We now read the column vector




1
1
0


 as the base two number 110 = 1 ·

22 + 1 · 21 + 0 · 20 = 4 + 2 = 6, which means the 6th bit has been altered.
Changing the 6th bit corrects the error caused in transmission.

Error-correcting codes are of practical use because they greatly decrease
the probability of an error without greatly lengthening the transmission.
The design of error correcting codes depends very much on linear algebra
as well as much more sophisticated mathematics beyond the scope of this
course. An example of a much more sophisticated code is a code known
as the Golay code. The Golay code is a 12 dimensional subspace of 23
dimensional binary space F23

2 . In analogy with the first Hamming code,
there is an encoding 23× 12 matrix E which encodes a 12 bit word into a
23 bit word. The image of the matrix E in F23

2 is the 12 dimensional Golay
code. There is also a testing matrix T whose kernel is the Golay code as well
as a decoding matrix (a linear transformation from F23

2 to F12
2 ). The Golay

code, which is used both in satellite as well as spacecraft data transmission,
has the ability to detect up to 6 bit changes in a code word and to correct
code words which have been altered in 3 bits or less.

Suppose that each bit has a .01 chance of being transmitted incorrectly.
10



The chance that four bits will be transmitted correctly is thus .994 = .9606.
If we encode them with the first Hamming code, the chance is .997 = .9320
that all seven bits will be correct, and 7 · .01 · .996 = .0659 that there is
only one error (since any one of seven bits can be the wrong one), for a
chance of .9979 that four bits will be transmitted correctly. This is 19 times
more reliable. The probability of no error in 23 bits is .9923 = .793614, The
probabililty of one error is 23 · .01 · .9922 = .184375. If there are two errors,
there are 23 possible bits which can be one wrong bit, and 22 possibilities
which are another wrong bit, but each pair of wrong bits is being counted
twice (bits 2 and 8 being wrong is the same as bits 8 and 2 being wrong), so
there are 23 ·22/2 ways to have two wrong bits, and the total probability of
two wrong bits is (23·22/2)·.012 ·.9921 = .020486. Similarly, the probability
of three wrong bits is (23 · 22 · 21/6) · .013 · .9920 = .001449. Adding these
together gives a probability of .999924. For comparison, the chance is .9939
that the same 12 bits will be correct if they are transmitted as three groups
of four using the first Hamming code; so the Golay code cuts the errors by
an additional factor of 80 using only two more bits (23 bits for the Golay
code vs 21 bits for three copies of the first Hamming code).

11



§ Exercises.

1. Write out the multiplication table for the modular numbers (finite
field) F7

2. Solve the equation 4x = 5 in the finite field F7

3. Find the inverse matrix of

A =
[

3 3
4 2

]

where all entries are in the modular numbers F7. Solve the linear system

3x1 + 3x2 = 4
4x1 + 2x2 = 1

for numbers x1 and x2 in F7.

4. Choose a 4-bit word ~v in F4
2 code it via the encoding matrix E into a

7-bit Hamming code word ~w. Verify that ~w lies in the kernel of the
testing matrix T . Then change one of the bits of ~w and verify that the
testing matrix T allows one to determine which bit was changed.

5. Suppose you have received the code vector (encoded as a 7-bit Hamming
code word)

~w =




1
0
1
1
1
1
0




Find the transmitted vector ~v, correcting an error if necessary, and then
find the original 4 bit vector ~u.

6. Write out the multiplication table for the modular numbers F5 and
determine a matrix E (entries in F5) whose image is equal to the kernel
of the matrix

T =




2 0 0 1 1
3 1 0 1 1
4 2 1 1 1




12



7. How many vectors are there in the vector space F5
7? If W is a subspace

of F5
7 of dimension 3 how many vectors are in W?

13



§ Appendix. Euclidean Algorithm

The Euclidean algorithm is a procedure for finding the greatest common
divisor gcd(a, b) of two nonzero integers a and b. When the gcd(a, b) = 1,
the steps of the Euclidean algorithm can be ‘reversed’ to find inverse of the
number b in the modular system of the number a.

Euclidean Algorithm. If a > b are two positive integers, then their great-
est common divisor gcd(a, b) can be obtained as follows. Divide b into a to
get a quotient and remainder term

a = q1b + r1 the remainder r1 is between 0 and b− 1

If r1 = 0, then b divides a and gcd(a, b) = b. If r1 > 0 then we divide r1

into b to get

b = q2r1 + r2 the remainder r2 is between 0 and r1 − 1

If r2 = 0, then r1 divides a and gcd(a, b) = r1. If r2 > 0 then we divide r2

into r1 to get

r1 = q3r2 + r3 the remainder r3 is between 0 and r2 − 1

If r3 = 0, then r2 divides a and gcd(a, b) = r3. If r3 > 0 then we continue
on. The process will eventually stop since the remainders are getting smaller
(b > r1 > r2 > · · · > rk) but still larger than 0.

As an example of the process, we find the greatest common divisor be-
tween the integers 319 and 100. We have

319 = 3 · 100 + 19
100 = 5 · 19 + 5
19 = 3 · 5 + 4
5 = 1 · 4 + 1
4 = 4 · 1

So, the greatest common divisor of 319 and 100 is 1. In this case (when the
greatest common divisor is 1), the Euclidean algorithm provides us a way of

14



determining the inverse of the modular number 100319. We just reverse the
steps of the Euclidean algorithm starting with the last (r = 1) remainder.
We have

1 = 5− 4

= 5− (19− 3 · 5) = −19 + 4 · 5
= −19 + 4 · (100− 5 · 19) = 4 · 100− 21 · 19

= 4 · 100− 21 · (319− 3 · 100)
= −21 · 319 + 67 · 100

In the modular system 319, this becomes

1319 = −21319 · 319319 + 67319 · 100319

1319 = 0319 + 67319 · 100319

The inverse of 100319 in the m = 319 modular system is 67319.

For a prime p, the process of the Euclidean algorithm can be used to
find the inverse of any nonzero numbers in a modular number system. It is
why the modular number system for a prime p is a field.

Many of the things we do in the real field R can be done in a finite field
as well. For instance, in the finite field F7, we can solve system of linear
equations

3x1 + 3x2 = 4
4x1 + 2x2 = 1

by Gaussian elimination. We need to divide eliminate the variable x1 from
the 2nd equation by adding a multiple of the first equation. To do this we
need to find a modular number ? so tha ? · 3 = 4. From the multiplication
table for F7, or via the Euclidean algorithm, we find 5 · 3 = 1, so it must
be the case that 4 · 5 = 20 = 6 is the modular number we need to take for
?. Doing the elimination gives

3x1 + 3x2 = 4
(4− 6 · 3)x1 + (2− 6 · 3)x2 = 1− 6 · 4

which is
3x1 + 3x2 = 4

5x2 = 5
15



We see that x2 = 1. If we now perform the back substitution of x2 = 1 into
the first equation, we get 3x1 = 1 and so x1 = 5. As a check, we substitute
x1 = 5 and x2 = 1 into the original two equations. We have

3 · 5 + 3 · 1 = 1 + 3 = 4
4 · 5 + 2 · 1 = 6 + 2 = 1

§ Exercises.

1. Find the inverse of 105 in the finite field F1997 using the Euclidean algo-
rithm.

16


