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Abstract

We describe a recursive method for decomposing the regular representation of an algebra
group. The characters we generate include supercharacters as a special case and retain
many of their useful properties, such as having disjoint sets of irreducible constituents. As
an application, we show that our constructions produce all the irreducible modules of Un(F2)
for n ≤ 12, and then use the theory to explicitly construct the two irreducible modules of
U13(F2) with non-real characters.

1 Introduction

Given a finite group G, the first goal of the representation theorist is to decompose the group
algebra CG into irreducible submodules, and then to use this decomposition to construct
the irreducible characters and conjugacy classes of the group. While for many families of
finite groups we can solve this problem exactly, for others it becomes intractable. The groups
Un(Fq) of n×n upper triangular matrices over a finite field with ones on the diagonal serve
as one prominent example. Describing the conjugacy classes of these groups for general n
and q is a well known “wild” problem, in the sense that any solution would lead to a general
description of wild quivers which presumably does not exist. If there is a natural bijection
from the conjugacy classes of the group to its irreducible characters, then the character
theory of Un(Fq) may be equally indescribable, but we have no reason to believe a priori
that such a map exists. Nevertheless, work to date on the characters of Un(Fq) still places
us far from the irreducibles.

For such groups we must reformulate our stated goals. Rather than seeking to classify
the irreducible characters and conjugacy classes of G, we might instead try to determine a
“compatible” pair of partitions X ,K of the set of irreducible characters Irr(G) and the set of
conjugacy classes of G. By “compatible,” we mean that both partitions consist of the same
number of disjoint sets, and that the characters σX =

∑
ψ∈X ψ(1)ψ for X ∈ X are constant

on each union of the sets K ∈ K. Certainly the ordinary character theory of a group gives
rise to such a pair, but we may in general seek coarser partitions. [7] introduced this notion
to generalize a particular construction described first by Carlos André and refined by Ning
Yan for Un(Fq) [1, 14]. This construction gives a set of characters whose constituent sets
partition Irr(Un(Fq)) and which are constant on unions of conjugacy classes indexed by set
partitions of n. [7] generalized this particular construction to a larger family of groups known
as algebra groups and called the resulting character supercharacters.

An algebra group G is a group of the form G = 1+n for some finite dimensional nilpotent
Fq-algebra n, and the supercharacters of an algebra group G are a set of characters decompos-
ing the regular representation which approximate Irr(G). While not in general irreducible,
supercharacters display several useful properties which make them a valid substitute for the
complete character theory of G. For example:

(i) Each supercharacter uniquely corresponds to a two-sided orbit in some Fq-vector space
under a certain left/right action of G.
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(ii) Given a representative λ of the two-sided orbit corresponding a particular superchar-
acter χ, we can determine whether χ is irredicble by inspecting the intersection of left
and right one-sided orbits containing λ.

(iii) The set of supercharacters decompose the character of the regular representation of G.

(iv) Distinct supercharacters have no common irreducible constituents.

(v) Each supercharacter is induced from a linear character of an algebra subgroup of G.

In addition, we have an explicit formula for evaluating supercharacters on elements of G, and
supercharacters are constant on certain easily described unions of conjugacy classes called
superclasses.

In this work, we show how Diaconis and Isaacs’ supercharacter theory fits into a more
general recursive method for constructing characters of algebra groups. This method allows
us to decompose reducible supercharacters, and provides a way of constructing a set of
characters which better approximates Irr(G) than supercharacters. More importantly, the
characters we shall construct will retain analogues of properties (i)-(v). The main tool
in these constructions will be a certain kind of recursively defined sequence S indexing a
succession of vector spaces and their orbits under a two-sided action of G. If χS denotes the
character indexed by the sequence S, then our ultimate goal will be to show how to construct
a finite rooted tree of sequences T with the following properties:

(1) The character tree T̂ = {χS | S ∈ T } is uniquely determined by G.

(2) The root of T indexes the character χG of the regular representation of G, and the
sequences in T which are children of the root index the supercharacters of G.

(3) For each S ∈ T , the character χS is induced from a linear character of an algebra
subgroup of G.

(4) If S ∈ T and LS ⊆ T is the set of leaf nodes which are descendants of S, then the
character χS decomposes as the sum

χS =
1
mS

∑
T∈LS

mTχT

for some positive integers mS ,mT . In particular, the character χG of the regular
representation of G decomposes as the sum

χG =
∑
S∈L

mSχS

where L denotes the set of leaf nodes in T .

(5) If S, T ∈ T , then 〈χS , χT 〉 = 0 unless T is a descendent of S or vice versa. Thus every
irreducible character of G appears as a constituent of χS for exactly one S ∈ L .

After developing this theory, we discuss how it can be used in practice to compute modules
and characters of an algebra group. In particular, we show that our constructions generate
all irreducible characters of the upper triangular matrix groups Un(F2) for n ≤ 12, and
as a final application, we give an explicit construction for the two irreducible characters of
U13(F2) with non-real values. The somewhat unexpected existence of these characters was
first shown non-constructively in [10, 11]. We are able to prove that these characters are
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induced from linear characters of the algebra group

H =





1 • • • • • • • • • • • •
1 a • a • • • • • • • •

1 b 0 0 0 • • • • • •
1 0 0 0 c • 0 • • •

1 b • • • • • • •
1 b • • • • • •

1 c • • • • •
1 • 0 0 • •

1 0 0 0 •
1 • • •

1 • •
1 •

1



| a, b, c, • ∈ F2



,

where we use the symbol • to label a position whose value can be chosen independently
of all other positions. In the process of this construction we answer a number of questions
regarding the various properties of these characters. In particular, our observations show
that the two non-real irreducible characters of U13(F2) have degree 216, as conjectured in
[11], and hence that all real-valued characters of U13(F2) are realizable over R.

2 Notation

Below, we list our main notations.

Notation Usage

Fq, F+
q , F×q The finite field of q = pa elements, Fq viewed as an additive

group, and the multiplicative group of nonzero elements.
θ : F+

q → C× A fixed nontrivial homomorphism F+
q → C×.

n A nilpotent finite dimensional Fq-algebra.
G = 1 + n The algebra group of unipotent matrices 1 +X for X ∈ n.
un(Fq) The nilpotent Fq-algebra of n× n strictly upper triangular matrices.
Un(Fq) = 1 + un(Fq) The algebra group of n× n unipotent upper triangular matrices.
Irr(G) The set of irreducible characters of a group G.

hi A finite dimensional vector space over Fq indexed by i ∈ N.
λi An element of hi.
Li, Ri Subgroups of G which act on the hi on the left and right.
∗i,�i : Li × hi → hi Two left actions of Li on hi, usually abbreviated by ∗,�.
∗i,�i : hi ×Ri → hi Two right actions of Ri on hi, usually abbreviated by ∗,�.
ii A subspace of hi determined by λi and the �-actions of Li and Ri.
S = {(λi, hi,Li,Ri, ii)}ni=0 A finite sequence of 5-tuples (λi, hi,Li,Ri, ii) defined by a

specific recursive construction depending on G. We call
such an object a decomposition sequence of G.

LStabS(λ) Given λ ∈ hi, the subgroup of elements g ∈ Li with g �i λi = λi.
RStabS(λ) Given λ ∈ hi, the subgroup of elements h ∈ Ri with λi �i hi = λi.
hS The dual space i∗n of Fq-linear functionals of in.
LS , RS The subgroups of Ln, Rn which would appear in the final term of

any decomposition sequence formed by adding one 5-tuple to S.

vS,i : hi → CG A map indexing vectors in CG, usually abbreviated by vS .
VS ,MS The left and two-sided ideals of CG generated by vS,n(λn).
χS The character of the CG-module VS .
αS,i : Li × hi → C× A coefficient map corresponding to left multiplication by Li in VS .
βS,i : hi ×Ri → C× A coefficient map corresponding to right multiplication by Ri in VS .

D(G) The set of decomposition sequences of an algebra groups G.
T A subtree of D(G) defined by a specific recursive construction.

T̂ The tree of characters formed by replacing each S ∈ T with χS .
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3 Algebra groups

In this and the following section, we review the definition of an algebra group and the
construction of its supercharacters. To provide a concrete example, we then briefly describe
the supercharacters of Un(Fq).

Fix a finite field Fq of order q and prime characteristic p. For our purposes, an Fq-algebra
a is a vector space over Fq with an associative multiplication a×a→ a. For example, matrix
multiplication makes the vector space of n×n matrices over Fq into an algebra. We say that
a is nilpotent if for every X ∈ a we have Xk = 0 for some positive integer k. Throughout
this work, we let n denote a finite dimensional nilpotent Fq-algebra and let n∗ denote its dual
space of Fq-linear functionals λ : n→ Fq. The vector space un(Fq) of n×n upper triangular
matrices over Fq with zeros on the diagonal forms a canonical example of such an algebra.
Indeed, by Engel’s theorem we may always view n as a subalgebra of un(Fq) for some choice
of n and q.

The algebra group G corresponding to n is the set of formal sums G = 1 + n = {1 +X |
X ∈ n} with multiplication defined by

(1 +X)(1 + Y ) = 1 + (X + Y +XY ), for X,Y ∈ n.

G is a p-group of size |G| = |n| = qd where d = dim(n) is the dimension of n as a vector space,
and as a result every algebra group is nilpotent. Despite this, the commutator subgroup of G
may fail to be itself an algebra group [12], and consequently not every p-group is an algebra
group. Since we can embed every finite dimensional nilpotent Fq-algebra in un(Fq) for some
n, we can likewise view every algebra group over Fq as a subgroup of Un(Fq) = 1 + un(Fq),
the group of n× n upper triangular matrices over Fq with ones on the diagonal. Given this
identification, we can always define an algebra group by drawing a matrix with ones on the
diagonal, and then writing a linear function in some number of variables in each position
above the diagonal to specify its possible values. Of course, we cannot pick arbitrary functions
since our underlying nilpotent algebra must be closed, but this working definition provides
a useful way of visualizing such groups. For example, we could write

G =




1 t1 t2 t3 t4
1 t1 + t8 t6 t7

1 0 t1 − t8
1 t8

1

 | ti ∈ Fq

 =




1 a • • •
1 a + b • •

1 0 a− b
1 b

1

 | a, b, • ∈ Fq


to define an algebra group over Fq. On the right hand side we use the symbol • to label a
position whose value in an element of G can be chosen independently of all other positions.
We use this convention throughout in group definitions to simplify notation.

For a number of reasons, classifying the conjugacy classes and irreducible representations
of algebra groups appears to be a very difficult or even impossible task. This should not be
terribly surprising; after all, the family in question forms a large class of p-groups and the
problem of understanding the representations of all p-groups nearly amounts to understand-
ing the representations of all groups. More strikingly, the conjugacy classes and irreducible
representations of many more tangible subfamilies of algebra groups still appear to to defy
any general description. The groups Un(Fq) present perhaps the most famous example of
this complexity. Results of quiver theory imply that explicitly computing the conjugacy
classes and irreducible representations of Un(Fq) amounts to a “wild” problem, although
the difference between “wild” and “provably impossible” is a subtle distinction beyond the
scope of this work. Likewise, we do not have tight bounds on the asymptotic growth of
the number of conjugacy classes, and we appear to be still far from a proof or disproof of
Thompson’s conjecture that the number of conjugacy classes for fixed n is a polynomial in
q.

Despite such obstacles, a series of mathematicians have made significant progress in un-
derstanding the representation theory of Un(Fq) and algebra groups in general during last
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two decades. In particular, Carlos André [1] followed by Ning Yan [14] indepedently de-
veloped an elegant approximate character theory for Un(Fq). This theory describes the
construction of a set of characters of Un(Fq) whose constituents partition the irreducible
characters the group, and which possess a natural combinatorial interpretation in terms of
set partitions. At the same time, the theory also describes an equally elegant partition of
the conjugacy classes of Un(Fq) on which these characters are constant and easily evalu-
ated. Persi Diaconis and I. Martin Isaacs [7] generalized these constructions from the groups
Un(Fq) to all algebra groups. The characters in this theory are called supercharacters while
the unions of conjugacy classes are called superclasses. The body of results surrounding their
study has to come to form “supercharacter theory.”

In this work, we show how supercharacters fit into a larger recursive construction for
partitioning the irreducible characters of an algebra group into disjoint constituents of the
regular representation. In order to motivate our theory and to introduce preliminary defini-
tions and theorems, we briefly describe the relevant results from [7].

4 Supercharacters

At its heart supercharacter theory is an attempt to extend Kirillov’s orbit method for Lie
algebras to finite groups. In this spirit, we construct the supercharacters of an algebra group
G = 1 + n by first defining appropriate actions of G on n and n∗, and then translating
information about the orbits of these actions into representation theoretic terms.

To this end, first fix an algebra group G = 1 + n. Since we can view G as a subgroup of
the group of units of the algebra Fq · 1 + n, left and right multiplication defines a natural left
and right action of G on n. Similarly, G acts on n∗ on the left and right by

gλ(X) = λ(g−1X),

λh(X) = λ(Xh−1),

for g ∈ G, λ ∈ n∗, X ∈ n. More precisely, if we define a linear functional gλ by the
preceding formula for g ∈ G and λ ∈ n∗, then the map (g, λ) 7→ gλ defines a left group
action. Both of these left/right actions are compatible in the sense that (gX)h = g(Xh)
and (gλ)h = g(λh) for all g, h ∈ G, X ∈ n, and λ ∈ n∗. This property makes the notation
gXh = (gX)h = g(Xh) and gλh = (gλ)h = g(λh) well-defined. It also allows us to describe
the sizes of the two-sided orbits corresponding to our left/right actions in terms of the one-
sided orbits. The following lemma clarifies what we mean:

Lemma 4.1. Let L and R be finite groups which act on a set X on the left and right,
respectively. Suppose the actions of L and R are compatible, so that (gx)h = g(xh) for all
g ∈ L, h ∈ R, and x ∈ X . Let x ∈ X be an arbitrary element and write LxR = {gxh | g ∈
L, h ∈ R} to denote its two-sided orbit. Then

|LxR| = |Lx||xR|
|Lx ∩ xR|

.

Proof. The two-sided orbit LxR is a union of left orbits which are transitively permuted by
the right action of R. Because these orbits are transitively permuted, they are all the same
size |Lx| and so |LxR| = k|Lx| where k is the number of left orbits in LxR. The right action
of R is transitive on the set of intersections of xR with the k right translates of Rx, and
these k sets of cardinality |Lx ∩ xR| partition |xR|. It follows that |xR| = k|Lx ∩ xR|, and
so k = |xR|/|Lx ∩ xR| and |LxR| = |Lx||xR|/|Lx ∩ xR|.

We have a natural bijection n→ G given by X 7→ 1 +X ∈ G for X ∈ n. We define the
superclasses of G as the sets formed by applying this map to the two-sided G-orbits in n.
More exactly, the superclass of G containing g ∈ G is the set Kg = {1+x(g−1)y | x, y ∈ G}.
Since xg−1x−1 = 1+x(g−1−1)x−1 for all g, x ∈ G, a superclass is clearly a union of conjugacy
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classes, and since 1+x(1−1)x−1 = 1, there exists a superclass consisting of just the identity
element of G.

Constructing the supercharacters of G requires slightly more exertion on our part. For
this, we first choose an arbitrary nontrivial homomorphism θ : F+

q → C×; in other words, we
let θ denote a non-principal linear characters of the additive group of the field Fq. There is
really no natural choice of θ. We might constructively define θ by choosing a basis B for Fq
as a vector space (i.e., a minimal additive generating set) and then setting θ(b) = e2πi/p for
each b ∈ B. Of course, this still requires a more or less arbitrary choice of basis, although if
q is prime then a “natural” choice is B = {1}.

Given θ, we define the vector vµ ∈ CG for µ ∈ n∗ by

vµ =
1
|n|
∑
X∈n

θ(µ(X)) (1 +X)︸ ︷︷ ︸
∈G

. (4.1)

G acts on CG on the left and right by component-wise multiplication, and under these
natural actions it is easy to see that

gvµ = θµ(g)vgµ and vµh = θµ(h)vµh, for g, h ∈ G

where θµ(g) = θ
(
µ(g−1 − 1)

)
. Thus, given λ ∈ n∗, we can naturally define a left module V λ

and a two-sided ideal Mλ by

V λ = CGvλ = C-span{vµ | µ ∈ Gλ},
Mλ = CGvλCG = C-span{vµ | µ ∈ GλG}.

(4.2)

Let χλ denote the character of the module V λ. If LStab(λ) = {g ∈ G | gλ = λ}, then
θλ : G→ C× restricts to a linear character τ : LStab(λ)→ C× of LStab(λ) and it follows
immediately from our definition that χλ = τG is the character induced from τ . As such
χ(1) = dim(V λ) = |G|

|LStab(λ)| = |Gλ|.
We define the supercharacters G as the characters χλ for λ ∈ n∗. Clearly many of these

characters are the same. In particular, the map vµ 7→ vµx for x ∈ G gives an isomorphism
V λ → V λx, and so if γ ∈ GλG, then V γ ∼= V λ and χγ = χλ. It follows from this observation
that Mλ affords the character mλχ

λ where mλ = |GλG|
|Gλ| = |λG|

|Gλ∩λG| is the number of distinct
left orbits in the two-sided orbit GλG. Hence the supercharacters of G are indexed by the
distinct two-sided orbits in n∗. In particular, if I ⊆ n∗ is a set of representatives of these
orbits and eλ =

∑
γ∈GλG vγ for λ ∈ n∗, then

∑
λ∈I eλ = 1 ∈ CG. Since Mλ is a two-

sided ideal in CG, it follows that the irreducible constituents of the modules Mλ for λ ∈ I
partition Irr(G), and so by an elementary result in character theory we can write

eλ =
1
|G|

∑
γ∈GλG

∑
g∈G

θ(γ(g − 1))g =
∑
g∈G

mλχ
λ(g−1)g.

By comparing coefficients, this gives the following formula for χλ:

χλ(g) =
1
mλ

∑
µ∈GλG

θµ(g), for g ∈ G, (4.3)

where, we recall, mλ = |GλG|
|Gλ| and θµ(g) = θ(µ(g−1 − 1)). In addition, it follows that the

group algebra CG decomposes as

CG =
⊕
λ∈I

Mλ =
⊕
λ∈I

(V λ)⊕mλ (4.4)

and the character χG of CG decomposes as

χG =
∑
λ∈I

mλχ
λ. (4.5)
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Finally, by dimensional considerations we have

〈χλ, χµ〉 =
{
|Gλ ∩ λG|, if µ ∈ GλG,
0, otherwise, (4.6)

for λ, µ ∈ n∗, where 〈 , 〉 denotes the familiar inner product on the class functions of G given
by

〈χ, ψ〉 =
1
|G|

∑
g∈G

χ(g)ψ(g).

Thus distinct supercharacters have disjoint irreducible constituents, and we have a simple
condition for determining whether or not a supercharacter is itself irreducible.

5 Supercharacters of Un(Fq)
In this section we describe the superclasses and supercharacters of the group Un(Fq) =
1 + un(Fq) of n × n upper triangular matrices over Fq with ones on the diagonal. These
characters and classes posess a particularly elegant combinatorial interpretation, and we will
often refer to them later in examples.

The superclasses and supercharacters of Un(Fq) are indexed by Fq-labeled set partitions.
A set partition λ = (λ1, λ2, . . . ) of n is a finite sequence of disjoint, nonempty subsets
λi ⊆ {1, . . . , n} such that⋃

λi = {1, 2, . . . , n} and min(λ1) < min(λ2) < . . .

The sets λi are called the parts of λ. We view each part as a finite increasing sequence
of positive integers, and typically abbreviate λ by writing the numbers in each part from
left to write, separating successive parts with the “|” symbol. For example, we write λ =
({1, 2}, {3}) as λ = 12|3. Given i, j ∈ {1, . . . , n} and a set partition λ of n, we say that the
position (i, j) is in the support of λ if i, j are contained in the same part λk with i < j, such
that there is no x ∈ λk with i < x < j. We denote the set of such (i, j) by supp(λ). For
example, supp(145|2|36) = {(1, 4), (4, 5), (3, 6)}.

An Fq-labeled set partition is a set partition λ whose support is labeled by elements of F×q .
We write a labeled set partition by writing the set partition λ as above, and then replacing
each supported point “ij” with “i t_j” where t ∈ F×q is the label assigned to (i, j). Since F×q
has only one element, set partitions over F2 are equivalent to unlabeled set partitions. An
example of an F3-labeled set partition of 5 is

λ = 1 1
_3 2

_5|2 1
_4. (5.1)

Let Pn(Fq) denote the set of Fq-labeled set partitions of n. We denote the number of
elements of Pn(Fq) by B(n, q); this quantity is given by the recursive formula

B(0, q) = 1,

B(n+ 1, q) =
n∑
k=0

(
n

k

)
(q − 1)kB(n− k, q), for n ≥ 0.

(5.2)

For q = 2, B(n, q) is equal to the nth Bell number.
For each (i, j) ∈ supp(λ), let λij ∈ F×q denote the corresponding label, and for each

(i, j) /∈ supp(λ) let λik = 0. With this notation, we can naturally view the set partitions λ
of n as n× n upper triangular matrices over Fq whose (i, j)th entry is λij . We refer to this
matrix representation of a set partition as its diagram. For example, the diagram of the set
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partition given in (5.1) is

λ = 1 1
_3 2

_5|2 1
_4 =


0 0 1 0 0
0 0 0 1 0
0 0 0 0 2
0 0 0 0 0
0 0 0 0 0

 .

We can view Pn(Fq) as a subset of either un(Fq) or u∗n(Fq) by identifying set partitions with
their diagrams. As shown in [14], under these identifications Pn(Fq) comprises a complete
set of representatives of the two-sided orbits in both un(Fq) and u∗n(Fq). Therefore Fq-labeled
set partitions index both the superclasses and supercharacters of Un(Fq).

Following the convention of [6, 14], we define the intertwining index ι(λ) of a set partition
λ ∈ Pn(Fq) as the number of pairs of positions (i, k), (j, l) ∈ supp(λ) with 1 ≤ i < j <
k < l ≤ n. For example, ι(135|24) = 2 since we have (1, 3), (2, 4) ∈ supp(135|24) and
(2, 4), (3, 5) ∈ supp(135|24). As shown in [6, 7, 14], it follows directly from inspecting the
diagram of λ ∈ Pn(Fq) that 〈χλ, χλ〉 = |Un(Fq)λ ∩ λUn(Fq)| = qι(λ), and hence that χλ

is irreducible if and only if ι(λ) = 0. A set partition satisfying this condition is called
non-crossing, and so the irreducible supercharacters of Un(Fq) are indexed by non-crossing
Fq-labeled set partitions. More intuitively, if we write the numbers {1, . . . , n} in a circle,
then a set partition λ can be represented by drawing an Fq-labeled line between each pair
of numbers (i, j) ∈ supp(λ). A non-crossing set partition is then a partition which can be
drawn in this way with no crossing segments. Let Nn(Fq) denote the set of non-crossing
Fq-labeled set partitions. We denote the number of elements of Nn(Fq) by C(n, q); this
quantity is given by the recursive formula

C(0, q) = 1,

C(n, q) =
n−1∑
k=0

(q − 1)kN(n, n− k), for n ≥ 1,
(5.3)

where N(n, k) denotes the Narayana number N(n, k) = 1
n

(
n
k

)(
n
k−1

)
for n ≥ 1 and k ∈

{1, . . . , n}. For q = 2, C(n, q) = 1
n+1

(
2n
n

)
is equal to the nth Catalan number.

Using these constructions, we can slightly improve the upper bound given in [8] on the
number of conjugacy classes of Un(Fq) as a function of n. It appears the the following
theorem gives the best known bounds on this quantity:

Theorem 5.1. If the number of conjugacy classes of Un(Fq) is written qA(n,q)n2
, where

A(n, q) depends on n and q, then

1
12
− εn ≤ A(n, q) ≤ 2

12
+ εn

where εn is a quantity tending to zero as n→∞.

Remark. Theorem 3.2 of [8] gives a bound of 1
12 − εn ≤ A(n, q) ≤ 3

12 + εn.

Proof. The lower bound is given in [8]. Since the support of any λ ∈ Pn(Fq) contains at
most n−1 positions, there are at most (q−1)n−1B(n, 2) distinct supercharacters of Un(Fq).
The number of irreducible constituents of any supercharacter χλ is at most 〈χλ, χλ〉 =
qι(λ), and every irreducible character of the group appears in some supercharacter. As
(q − 1)n−1B(n, 2) ≤ qnnn = qn logq n+n = qεnn

2
for q ≥ 2, it follows that the number of

irreducible characters, which is the same as the number of conjugacy classes, is at most
qM(n)+εnn

2
where M(n) = maxλ∈Pn(Fq) ι(λ). Thus to prove the given result we must show

that M(n) ≤
(

1
6 + εn

)
n2.

To this end, choose λ ∈Pn(Fq) such that M(n) = ι(λ). Suppose (i, k1), (j, k2) ∈ supp(λ),
where i < j, and assume there are no positions in rows i + 1, . . . , j − 1, In this case we
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must have k1 < k2 since otherwise, by switching positions (i, k1), (j, k2) in supp(λ) with
(i, k2), (j, k1), we could obtain a new set partition λ′ ∈ Pn(Fq) with ι(λ′) = 1 + ι(λ).
Thus we may assume that supp(λ) is of the form supp(λ) = {(i1, k1), . . . , (im, km)} where
1 ≤ i1 < · · · < im < n and 1 < k1 < · · · < km ≤ n. We next observe that if ij+1− ij = δ > 1
for some j = 1, . . . ,m, then by replacing positions (ij+1, kj+1), . . . , (im, km) in supp(λ) with
(ij+1 − δ + 1, kj+1), . . . , (im − δ + 1, km) we could obtain a new set partition λ′ ∈ Pn(Fq)
for which ι(λ) ≥ ι(λ). Thus we may assume without loss of generality that ij+1 = ij + 1 for
each j. By a symmetric argument, we may likewise assume that kj+1 = kj + 1 for each j.

It follows from these observations that the nonzero positions of λ all lie on the same
diagonal of an n × n matrix. Clearly adding positions to this diagonal would only increase
ι(λ), and so may assume that supp(λ) is exactly the set of positions on some diagonal of an
n × n matrix. Suppose supp(λ) consists of the positions on the diagonal containing (1, k).
We may assume that k ≤ bn/2c + 1 since otherwise could increase ι(λ) by shifting each
nonzero position of λ to the left one column and then adding a position in the last column.
In this case it is easily seen by summing the positions on the k− 1 lower diagonals and then
subtracting the positions which are to the left of but not below positions in supp(λ) or vice
versa that

ι(λ) =
k−1∑
i=1

(n− i)− k(k − 1) = (k − 1)(n− 3
2k).

The right hand side achieves a global maximum as a function of k of
(
n
3 −

1
2

) (
n
2 −

3
4

)
≤(

1
6 + εn

)
n2, so M(n) ≤

(
1
6 + εn

)
n2 as desired.

6 Decomposition sequences

In this section we describe how to construct a certain kind of recursively defined sequence
which we will use to index a family of modules of an algebra group. The characters of these
modules will include supercharacters as a special case, and each step in their construction
will very much mirror the supercharacter constructions described in Section 4.

Throughout this section, fix an algebra group G = 1 + n. To motivate our ideas, we first
present the following definitions. Given λ ∈ n∗, let Lλ,Rλ ⊆ G be the sets

Lλ = {g ∈ G | gλ ∈ Gλ ∩ λG},
Rλ = {h ∈ G | λh ∈ Gλ ∩ λG}.

One can easily check that these sets are in fact subgroups of G, and we will soon show in
a slightly more general context that these subgroups are algebra groups. For a moment fix
λ ∈ n∗, and define W as the vector space

W = CLλvλ = C-span{vµ | µ ∈ Gλ ∩ λG} = vλCRλ.

Observe that W is a left CLλ-module and a right CRλ-module. The essential motivation
for our constructions comes from the following observations:

(1) V λ is the module V λ = IndG
Lλ

(W ) = CG⊗CLλ W induced from W .

(2) If U ⊆W is a left CLλ-submodule and a right CRλ-submodule of W , then the module
CG ⊗CLλ U ⊗CRλ

CG is a submodule of Mλ and a two-sided ideal in CG which
decomposes as a direct sum of isomorphic copies of the induced module IndG

Lλ
(U).

Both statements follow essentially by inspection, but they contain a powerful idea which
we will exploit throughout to decompose the supercharcters of G into smaller constituents.
In particular, in order to construct a finer partition of Irr(G) than the one afforded by
supercharacter theory, we need some kind general method of decomposing a module into left
and right invariant submodules. We decompose the group algebra CG into supercharacter
modules by first noting that G naturally acts on the vector space n on the left and right
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by matrix multiplication. These actions correspond to a dual action of G on the vector
space n∗, the orbits of which index two-sided ideals in CG. To transplant this process to
the module W , we observe that the groups Lλ and Rλ naturally act on the vector space
i = Gλ ∩ λG− λ. We can use these actions to define a dual left and right action of Lλ and
Rλ on i∗, and perhaps the orbits of these actions will similarly index Lλ- and Rλ-invariant
submodules of W . This will indeed turn out to be the case, and so our observations suggest
a recursive method for decomposing the supercharacter χλ whereby we generate a sequence
of smaller and smaller vector spaces whose orbits under certain actions index smaller and
smaller submodules of CG.

This covers the big picture; now we move on to the details. As mentioned earlier, the
main aim of this section is to define a kind of recursively constructed sequence S. Each term
of this sequence we be a 5-tuple of the form (λi, hi,Li,Ri, ii). hi is a vector space over Fq of
which λi ∈ hi is an arbitrary element; Li,Ri ⊆ G are subgroups; and ii ⊆ hi is a subspace.
The groups Li and Ri act on hi on the left and right in two ways: by a natural multiplication
∗i, and by a less natural action �i whose definition depends on previously defined structures.
Let Li�i λ and λ�iRi denote the left and right orbits containing λ under the latter action.
We then define ii as the set ii = Li �i λi ∩ λi �i Ri − λi; this set turns out to be a vector
space.

To define the next 5-tuple (λi+1, hi+1,Li+1,Ri+1, ii+1), we let hi+1 = i∗i be the dual
space of Fq-linear functionals on ii, and choose an arbitrary element λi+1 ∈ hi+1. The
groups Li+1 ⊆ Li and Ri+1 ⊆ Li are then defined as the subsets of elements which permute
that intersection Li � λi ∩ λi � Ri of the left and right orbit of and λi.We have analogous
left and right actions ∗i+1,�i+1 of these subgroups on hi+1, and as before, we define ii+1 as
the vector space ii+1 = Li+1 �i+1 λi+1 ∩ λi+1 �i+1 Ri+1 − λi+1.

Continuing this process, we can define a sequence of 5-tuples S = {(λi, hi,Li,Ri, ii)}ni=0

of arbitrary length. Even from the cursory outline given above, one can see that S is uniquely
determined by the elements λi ∈ hi. However, to collect all of our notations in one place,
we include the auxiliary objects Li,Ri, ii in each term. We call S a decomposition sequence
since each successive term specifies how to decompose the CG module indexed by the pre-
ceding subsequence. The following definition formally presents the recursive construction of
a decomposition sequence outlined above, although at this point it should not be clear that
these constructions are well-defined.

Definition 1. A decomposition sequence S = {(λi, hi,Li,Ri, ii)}ni=0 of an algebra group
G = 1 + n is a sequence of 5-tuples constructed by the following recursive procedure:

(1) Let h0 = n and L0 = R0 = G. Define two left and right actions ∗0,�0 of L0 and R0

on h0 by
g ∗0 λ = gλ,

λ ∗0 h = λh,
and

g �0 λ = g(λ+ 1)− 1,
λ�0 h = (λ+ 1)h− 1,

for g ∈ L0, h ∈ R0, λ ∈ h0. Let λ0 = 0 ∈ h0 and i0 = n.

(2) For 0 < i ≤ n, let hi = i∗i−1 be the dual space of Fq-linear functional on ii−1 and let

Li = {g ∈ Li−1 | g �i−1 λi−1 − λi−1 ∈ ii−1},
Ri = {g ∈ Ri−1 | λi−1 �i−1 g − λi−1 ∈ ii−1}.

Define two left and right actions ∗i,�i of Li and Ri on hi by the formulas

(g ∗i λ)(X) = λ(g−1 ∗i−1 X),

(λ ∗i h)(X) = λ(X ∗i−1 h
−1),

and
g �i λ = g ∗i λ+ ΦL

S,i[g],

λ�i h = λ ∗i h+ ΦR
S,i[h]

for g ∈ Li, h ∈ Ri, λ ∈ hi, and X ∈ ii−1, where ΦL
S,i[g],ΦR

S,i[h] ∈ hi are the linear
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functionals defined by

ΦL
S,i[g](X) =

{
0, i = 1,
X(g �i−2 λi−2 − λi−2), i > 1,

ΦR
S,i[h](X) =

{
0, i = 1,
X(λi−2 �i−2 h− λi−2), i > 1.

Choose an arbitrary element λi ∈ hi, and let ii be the subspace of hi given by the set
ii = Li �i λi ∩ λi �i Ri − λi.

To simplify notation, we typically omit the subscripts from the actions ∗i,�i and write ∗,�
when the context is clear. Since we can think of the vector spaces hi as mutually disjoint,
this convention presents minimal ambiguity.

Remark. This definition employs the same symbols ∗,� to denote our left and right actions
for all decomposition sequences S. We will always discuss these actions in the context of
some fixed sequence S, so in practice this slightly abusive convention should not cause any
confusion.

Let D(G) denote the set of all decomposition sequences of G. We define the rank of
a sequence S ∈ D(G), denoted rank(S), to be the least positive integer r ≤ n such that
|ir| = |ir+1|, or n if no such r exists. In a precise sense, we shall see that extending a
decomposition sequence to a length greater than its rank does not yield any additional
information, and so the problem of computing “all” decomposition sequences is a finite one.
Before showing that these concepts are well-defined, we provide a detailed example of what
a decomposition sequence looks like in practice.

Example. Suppose G = 1+n is the algebra group U7(Fq) = u7(Fq) of 7×7 upper triangular
matrices over Fq:

G =





1 • • • • • •
1 • • • • •

1 • • • •
1 • • •

1 • •
1 •

1

 | • ∈ Fq


.

We construct a decomposition sequence S = {(λi, hi,Li,Ri, ii)}2i=0 with rank(S) = 2. Fol-
lowing Definition 1, we let λ0 = 0 ∈ h0 = i0 = n and L0 = R0 = G. h1 is then given by
the dual space n∗ and L1 = R1 = G. We can identify h1 = n∗ with i0 = n by viewing each
functional λ ∈ n∗ as a matrix and evaluating λ at X ∈ n by λ(X) =

∑
i,j λijXij . Under this

identification, let

λ1 =



0 0 0 1 0 0 0
0 0 0 1 0 0

0 0 0 1 0
0 0 0 1

0 0 0
0 0

0

 .

The left and right orbits of λ1 under the �-actions of L1 and R1 are then

L1�λ1 =





0 0 0 1 0 0 0
0 0 • 1 0 0

0 • • 1 0
0 • • 1

0 • •
0 •

0




and λ1�R1 =





0 • • 1 0 0 0
0 • • 1 0 0

0 • • 1 0
0 • • 1

0 0 0
0 0

0
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so

i1 =





0 0 0 0 0 0 0
0 0 • 0 0 0

0 • • 0 0
0 • • 0

0 0 0
0 0

0

 | • ∈ Fq


.

h2 is then the dual space of i1, and L2 and R2 are given by the algebra subgroups

L2 =





1 • • • • • •
1 • • • • •

1 • 0 • •
1 0 0 •

1 • •
1 •

1




and R2 =





1 • • • • • •
1 • 0 • • •

1 0 0 • •
1 • • •

1 • •
1 •

1




As before we can identity h2

∼= i1 by viewing functionals as matrices and evaluating λ(X) for
λ ∈ h2 and X ∈ i1 by means of the standard matrix inner product. Under this identification,
let

λ2 =



0 0 0 0 0 0 0
0 0 0 0 0 0

0 0 1 0 0
0 0 0 0

0 0 0
0 0

0

 .

The left and right orbits of λ2 under the �-actions of L2 and R2 are then

L2�λ2 =





0 0 0 0 0 0 0
0 0 • 0 0 0

0 • 1 0 0
0 0 0 0

0 0 0
0 0

0




and λ2�R2 =





0 0 0 0 0 0 0
0 0 0 0 0 0

0 0 1 0 0
0 • • 0

0 0 0
0 0

0




so i2 = {0}. One could technically extend the sequence S past this point, but since i2 is
trivial, all subsequent terms would necessarily be trivial as well. We will show in the next
section that this decomposition sequence indexes one of the irreducible constituents of the
reducible supercharacter χλ1 of U7(Fq).

To verify that these constructions are well-defined, we must show that the sets Li,Ri

are groups, that the operations ∗,� define left and right group actions, and that the sets
ii are vector spaces. In the course of this verification, we will show in addition that the
left/right actions defined by ∗i and �i are compatible. To this end, we fix a decomposition
sequence S = {(λi, hi,Li,Ri, ii)}ni=0 ∈ D(G) and proceed by induction on i. By definition
L0 = R0 = G are groups. Since we can view G as a subgroup of the group of units of the
algebra Fq · 1 + n, the multiplication ∗ defines compatible left and right actions of L0 and
R0 on h0 = n. Likewise, checking that � defines compatible left and right group actions of
L0 and R0 on h0 requires trivial verification, and i0 = n is by definition a vector space.

Now let 0 < i ≤ n and suppose that for all 0 ≤ j < i, the sets Lj ,Rj are groups, the
operations ∗,� define compatible left and right group actions of Lj and Rj on hj , and the
set ij is a vector space. To show that Li is a subgroup of Li−1, suppose g, h ∈ Li, so that
g�λi−1 = λi−1 � g̃ and h�λi−1 = λi−1 � h̃ for g̃, h̃ ∈ Ri−1. Since � defines a left and right
group action on hi−1, we have that h−1 � λi−1 � h̃ = h−1h� λi−1 = λi−1 so h−1 � λi−1 =
λi−1 � h̃−1. Therefore gh−1 ∈ Li since gh−1 � λi−1 = g � λi−1 � h̃−1 = λi−1 � g̃h̃−1, so Li
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is a subgroup. By the same argument switched from the left to the right action, it follows
that Ri is a subgroup as well.

The operations ∗,� of Li and Ri on hi are only well-defined if ii−1 is closed under the
∗-actions of Li and Ri; that is, if g ∗X ∈ ii−1 and X ∗ h ∈ ii−1 for all X ∈ ii−1, g ∈ Li, and
h ∈ Ri. We can show that this condition holds by observing that if 0 ≤ j < i and µ, ν ∈ hj ,
then by definition

g � (µ+ ν) = g ∗ µ+ g � ν, for all g ∈ Lj ,
(µ+ ν) � h = µ ∗ h+ ν � h, for all h ∈ Rj .

(6.1)

Since every X ∈ ii−1 is of the form X = x� λi−1 − λi−1 for some x ∈ Li, we have

g ∗X = g ∗X + g � λi−1 − g � λi−1 = g � (x� λi−1) + g � λi−1

= (gx� λi−1 − λi−1)− (g � λi−1 − λi−1) ∈ ii−1

for all g ∈ Li, where the inclusion follows from our assumption that ii−1 is a subspace. A
similar argument shows that X ∗ h ∈ ii−1 for all h ∈ Ri, and so ii−1 is closed under the
∗-actions of Li and Ri, as desired.

One can easily show by finite induction that the left and right actions defined by ∗ are
linear; i.e., that g ∗ (aX + bY ) ∗ h = a(g ∗X ∗ h) + b(g ∗ Y ∗ h) for all a, b ∈ Fq, X,Y ∈ ii−1,
g ∈ Li−1, and h ∈ Ri−1. As such, it follows immediately that the maps defined by g ∗λ, λ∗h
and g � λ, λ� h for g ∈ Li, h ∈ Ri and λ ∈ hi are indeed well-defined linear functionals on
ii−1. It is a routine exercise to check that ∗ defines compatible left and right group actions
of Li and Ri on hi, but the same verification for � requires a bit more work.

If i = 1 then � and ∗ define the same actions, so assume i > 1. Let g, h ∈ Li and λ ∈ hi.
For all X ∈ ii−1 we have

(g � (h� λ))(X) = (h� λ)(g−1 ∗X) + ΦL
S,i[g](X)

= λ(h−1g−1 ∗X) + ΦL
S,i[g](X) + ΦL

S,i[h](g−1 ∗X)

= λ(h−1g−1 ∗X) +X(g � λi−2 − λi−2) + (g−1 ∗X)(h� λi−2 − λi−2)

= λ(h−1g−1 ∗X) +X(g ∗ (h� λi−2 − λi−2) + g � λi−2 − λi−2).

To show that this expression is equal to (gh� λ)(X), it suffices to prove that

g ∗ (h� λi−2 − λi−2) + g � λi−2 = gh� λi−2 (6.2)

for all g, h ∈ Li−2. This follows directly by taking µ = h�λi−2−λi−2 and ν = λi−2 in (6.1),
since by assumption g � (h� λ) = gh� λ for all g, h ∈ Li−2 and λ ∈ hi−2.

The proof that � defines a right action of Ri on hi is similar and involves showing that

(λi−2 � g − λi−2) ∗ h+ λi−2 � h = λi−2 � gh (6.3)

for all g, h ∈ Ri−2. This identity also follows directly from (6.1) by taking µ = λi−2�g−λi−2

and ν = λi−2. Finally, to show that these actions are compatible it suffices to prove that

g ∗ (λi−2 � h− λi−2) + g � λi−2 = (g � λi−2 − λi−2) ∗ h+ λi−2 � h (6.4)

for all g ∈ Li−2 and h ∈ Ri−2. Since the left hand side is equal to g � (λi−2 � h) while
the right hand side is equal to (g � λi−2) � h, this follows immediately from our inductive
hypotheses. Thus � defines compatible left and right group actions of Li and Ri on hi.

These results will be of some use later, so we state them in slightly greater generality as
the following lemma:

Lemma 6.1. Let S = {(λi, hi,Li,Ri, ii)}ni=0 ∈ D(G) be a decomposition sequence. Then
the following hold:

(1) g ∗ (λ ∗ h) = (g ∗ λ) ∗ h and g� (λ� h) = (g� λ) � h for all g ∈ Li, h ∈ Ri, and λ ∈ hi.
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(2) If i > 0 and X ∈ ii−1, then g ∗X ∈ ii−1 and X ∗ h ∈ ii−1 for all g ∈ Li and h ∈ Ri.

(3) g ∗ (h� λ− λ) = gh� λ− g � λ for all g, h ∈ Li and λ ∈ hi.

(4) (λ� g − λ) ∗ h = λ� gh− λ� h for all g, h ∈ Ri and λ ∈ hi.

(5) g ∗ (λ� h− λ) + g � λ = (g � λ− λ) ∗ h+ λ� h for all g ∈ Li, h ∈ Ri, and λ ∈ hi.

(6) If i > 0, then

(g−1 � λ− λ)(λi−1 � h− λi−1) = (λ� h−1 − λ)(g � λi−1 − λi−1)

for all g ∈ Li, h ∈ Ri, and λ ∈ hi.

Proof. We gave the first two results above, and proved (3)-(5) with i replaced by i−2. Since �
defines an action of Li and Ri on hi, the same proofs now apply to the present case. Observe
that (6) is well-defined since by definition λi−1 � h− λi−1 ∈ ii−1 and g� λi−1− λi−1 ∈ ii−1.
To prove this result, we proceed by induction on i. One can check (6) directly for i = 1 using
(5), so suppose i > 1 and the identity holds if we replace i with i − 1. Using (5), we then
have

(g−1 � λ − λ)(λi−1 � h− λi−1) = λ(g ∗ (λi−1 � h− λi−1)− λi−1 � h− λi−1) + k1,

= λ((g � λi−1 − λi−1) ∗ h− g � λi−1 − λi−1) + k1

= (λ� h−1 − λ)(g � λi−1 − λi−1) + k1 − k2

where k1 = (λi−1�h−λi−1)(g−1�λi−2−λi−2) and k2 = (g�λi−1−λi−1)(λi−2�h−1−λi−2).
By assumption k1 = k2, so by induction (6) holds for all i.

The last property requiring verification is that the set ii is a vector space over Fq. For
this we will prove the following lemma:

Lemma 6.2. Let S = {(λi, hi,Li,Ri, ii)}ni=0 ∈ D(G) be a decomposition sequence. Then
the following hold:

(1) Let g, h ∈ Li and g̃, h̃ ∈ Ri. Fix a, b ∈ Fq, and define x, x̃ ∈ G by

x =

{
1 + a(g − 1) + b(h− 1), if i is even,

(1 + a(g−1 − 1) + b(h−1 − 1))−1, if i is odd.

x̃ =

{
1 + a(g̃ − 1) + b(h̃− 1), if i is even,

(1 + a(g̃−1 − 1) + b(h̃−1 − 1))−1, if i is odd.

Then x ∈ Li and x̃ ∈ Ri, and

x� λ = (1− a− b)λ+ a(g � λ) + b(h� λ),

λ� x̃ = (1− a− b)λ+ a(λ� g̃) + b(λ� h̃).

(2) Li and Ri are algebra groups for all i.

(3) Let li = Li � λi − λi and ri = λi � Ri − λi for i = 0, 1, . . . , n. Then li and ri are
Fq-subspaces of hi for all i.

(4) ii is an Fq-subspace of hi for all i.

Proof. Since by definition ii = li ∩ ri, these results imply that ii is a subspace, and therefore
by induction that our concept of a decomposition sequence is well-defined. As we have not
verified this directly, we must proceed by induction on i.

14



For i = 0 the left and right � actions of L0 = R0 = G on h0 = n are transitive, so
r0 = l0 = h0 are Fq-subspaces and L0 and R0 are algebra groups. In addition, if g, h ∈ L0,
g̃, h̃ ∈ R0, and λ ∈ h0, then for any a, b ∈ Fq, one can check directly that

(1 + a(g − 1) + b(h− 1)) � λ = (1− a− b)λ+ a(g � λ) + b(h� λ),

λ� (1 + a(g̃ − 1) + b(h̃− 1)) = (1− a− b)λ+ a(λ� g̃) + b(λ� h̃).

Since i0 = n, L1 = R1 = G are again algebra groups, and if g, h ∈ L1, g̃, h̃ ∈ R1, and λ ∈ h1,
then for any a, b ∈ Fq, one can check that

(1 + a(g−1 − 1) + b(h−1 − 1))−1 � λ = (1− a− b)λ+ a(g � λ) + b(h� λ),

λ� (1 + a(g̃−1 − 1) + b(h̃−1 − 1))−1 = (1− a− b)λ+ a(λ� g̃) + b(λ� h̃).

Now let i > 1 and suppose for 0 ≤ j < i, the sets Lj ,Rj are groups, the operations ∗,�
define compatible left and right group actions of Lj and Rj on hj , the set ij is a vector space,
and the results of the lemma hold. It is a simple inductive exercise to show from here that (1)
holds for j = i; we omit this proof for the sake of brevity. Now let g, h ∈ Li so that for some
g̃, h̃ ∈ Ri, g�λi−1 = λi−1 � g̃ and h�λi−1 = λi−1 � h̃. Fix a, b ∈ Fq and define x, x̃ ∈ G as
in (1). Then x ∈ Li−1 and x̃ ∈ Ri−1 since by assumption Li−1 and Ri−1 are algebra groups,
and by (1) we have that x � λi−1 = λi−1 � x̃. In the even case this suffices to show that
Li − 1 and Ri − 1 are Fq-vector spaces and therefore associative nilpotent Fq-algebras. In
the odd case this result still follows by replacing g, h, g̃, h̃ with their inverses and noting that
x� λi−1 = λi−1 � x̃ implies x−1 � λi−1 = λi−1 � x̃−1. Thus Li and Ri are algebra groups.
In addition li is a subspace, since if γ1 = g � λi − λi ∈ li and γ2 = h � λi − λi ∈ li, then
aγ1 + bγ2 = x� λ ∈ li. By the same argument, it follows that ri is also a subspace. (4) then
follows immediately since ii = li ∩ ri, and so by induction the results of the lemma hold for
all i, and the concept of a decomposition sequence is well-defined.

All of our definitions thus far have been completely symmetric with respect to left and
right. The following lemma describes some consequences of this symmetry which will be
useful in the next section. In particular, the lemma introduces a notation for the �-stabilizer
subgroups of Li and Ri with respect to a functional λ ∈ hi. These subgroups will be especially
important in defining the characters indexed by a decomposition sequence. In particular,
the characters in question will be induced from linear characters of the stabilizer subgroups.

Lemma 6.3. Given a decomposition sequence S = {(λi, hi,Li,Ri, ii)}ni=0 ∈ D(G) and
λ ∈ hi, let

LStabS(λ) = {g ∈ Li | g �i λ = λ} and RStabS(λ) = {g ∈ Ri | λ�i g = λ}.

The following then hold:

(1) LStabS(λ) and RStabS(λ) are algebra groups for all λ ∈ hi, and so the orbit sizes
|Li � λ| = |Li|/|LStabS(λ)| and |λ� Ri| = |Ri|/|RStabS(λ)| are powers of q.

(2) If λ ∈ hi and i > 0, then

LStabS(λ) = {g ∈ Li | g �i−1 λi−1 − λi−1 ⊆ ker(µ− λ) for all µ ∈ λ�i Ri},
RStabS(λ) = {h ∈ Ri | λi−1 �i−1 h− λi−1 ⊆ ker(µ− λ) for all µ ∈ Li �i λ}.

(3) LStabS(λi−1) C Li and RStabS(λi−1) C Ri for all i > 0.

(4) LStabS(λi−1) C LStabS(λ) and RStabS(λi−1) C LStabS(λ) for all λ ∈ hi and i > 0.

(5) Let QLi = Li/LStabS(λi−1) and QRi = Ri/RStabS(λi−1) for i > 0. Then the
quotient groups are isomorphic: QLi ∼= QRi.

(6) |Li � λ| = |λ� Ri| and |LStabS(λ)| = |RStabS(λ)| for all λ ∈ hi and i ≥ 0.
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Proof. (1) follows immediately from the first result in the preceding lemma. To show (2),
let g ∈ Li and h ∈ Ri and observe by Lemma 6.1 that

(g−1 � λ− λ)(λi−1 � h−1 − λi−1) = (λ� h− λ)(g � λi−1 − λi−1).

Since every X ∈ ii−1 is of the form λi−1 � h−1 − λi−1 for some h ∈ Ri and since g � λ = λ
iff g−1 � λ − λ = 0, it follows that g ∈ LStabS(λ) iff g � λi−1 − λi−1 ⊆ ker(λ � h − λ) for
all h ∈ Ri, or equivalently iff g � λi−1 − λi−1 ⊆ ker(µ− λ) for all µ ∈ λ� Ri. The proof of
the second half of (2) is similar.

To prove (3), observe that if g ∈ LStabS(λi−1) and x ∈ Li so that x� λi−1 = λi−1 � x̃
for some x̃ ∈ Ri, then x−1gx � λi−1 = x−1g � λi−1 � x̃ = x−1 � λi−1 � x̃ = x−1x �
λi−1 = λi−1, so x−1gx ∈ LStabS(λi−1). Therefore LStabS(λi−1) C Li, and the proof that
RStabS(λi−1) C Ri is similar. For (4), it suffices to show that LStabS(λi−1) ⊆ LStabS(λ)
and RStabS(λi−1) ⊆ RStabS(λ) for all λ ∈ hi. Since every X ∈ ii−1 is of the form
X = λi−1 � h− λi−1 for some h ∈ Ri, if g ∈ LStabS(λi−1) and λ ∈ hi, then by Lemma 6.1,

(g � λ− λ)(X) = (λ� h−1 − λ)(g−1 � λi−1 − λi−1) = (λ� h−1 − λ)(λi−1 − λi−1) = 0.

Since this holds for all X ∈ ii, we have g� λ = λ so LStabS(λi−1) ⊆ LStabS(λ). A similar
argument shows that RStabS(λi−1) ⊆ RStabS(λ).

To prove (5) consider the map QLi → QRi defined on coset representatives by g 7→ g̃
where g ∈ Li and g̃ ∈ Ri satisfy g � λi−1 = λi−1 � g̃. It is a simple exercise to show
that this map is well-defined and gives an isomorphism between the two quotient groups.
Finally, for (6) we proceed by induction on i. Since L0 � λ = λ � R0 = h0 = n and
LStabS(λ) = RStabS(λ) = {1} for all λ ∈ h0, our result holds automatically for i = 0.
Suppose i > 0 and |Li � λi| = |λi � Ri| and |LStabS(λi)| = |RStabS(λi)|. Note that this
hypothesis combined with (5) implies |Li+1| = |Ri+1|. Now observe that if λ ∈ hi+1, then
by (2) and (4) we have

|LStabS(λ)|
|LStabS(λi)|

=
|ii|

|λ� Ri+1|
=
|Ri+1|/|RStabS(λi)
|Ri+1|/|RStabS(λ)|

=
|RStabS(λ)|
|RStabS(λi)|

,

so |LStabS(λ)| = |RStabS(λ)| and |Li+1 � λ| = |Li+1|
|LStabS(λ)| = |Ri+1|

|RStabS(λ)| = |λ � Ri+1|.
Hence (6) holds for all i and the proof of the lemma is complete.

The preceding lemma gives rise to the following corollary:

Corollary 6.1. Let S = {(λi, hi,Li,Ri, ii)}ni=0 ∈ D(G) be a decomposition sequence. Write
nS,i = |Li�λi|

|ii| = |λi�Ri|
|ii| . Then the two-sided orbit Li � λi � Ri is a union of nS,i left orbits

that are transitively permuted by the right �-action of Ri, and it is also the union of nS,i right
orbits that are transitively permuted by the left �-action of Li. Furthermore, |Li �λi � Ri|
and nS,i are powers of q.

Proof. Since |Li � λi|, |λi � Ri|, and |ii| are powers of q by the preceding lemma and the
fact that ii is a vector space over Fq, the results in this corollary follow immediately from
Lemma 4.1.

7 Module constructions

Now that we have introduced the definition of a decomposition sequence, we show how to
use such sequences to decompose the regular representation of an algebra group. As in
Section 4, fix a nontrivial homomorphism θ : F×q → C× from the additive group of Fq to the
multiplicative group of the complex numbers C. In other words, let θ be any one of the q−1
non-prinicipal linear characters of the additive group F+

q .
Given an element w =

∑
g∈G cgg ∈ CG where each cg ∈ C, let w =

∑
g∈G cgg. The usual

properties of complex conjugation then carry over to the group algebra, as clearly x · y = xy
and x+ y for all x+ y for all x, y ∈ CG. We now have the following definition:
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Definition 2. Given a decomposition sequence S = {(λi, hi,Li,Ri, ii)}ni=0 ∈ D(G) of an
algebra group G = 1 + n, let vS,i : hi → CG be the map defined recursively by

vS,0(λ) = λ+ 1 ∈ G, for λ ∈ h0,

vS,i+1(λ) =
1
|ii|

∑
X∈ii

θ(λ(X))vS,i(λi +X), for λ ∈ hi+1, 0 ≤ i < n.

To simplify notation, we will typically omit the second subscript and abbreviate vS when
the context is clear.

Observe that vS,1(λ) = vλ for λ ∈ n∗ in the notation of Section 4. Thus the following
definition should look familiar for the case n = 1:

Definition 3. Given a decomposition sequence S = {(λi, hi,Li,Ri, ii)}ni=0 ∈ D(G) of an
algebra group G, let VS and MS be the CG-modules

VS = CGvS(λn) and MS = CGvS(λn)CG,

and let χS be the character of VS .

Since vS(λ) = λ+ 1 for all λ ∈ h0 = n, we have VS = MS = CG if S ∈ D(G) has a single
term. More significantly, comparing this definition to equation (4.2), we see that VS = V λ1

is the module of a supercharacter if S has only two terms. Thus the characters χS for two-
term decomposition sequences are just the supercharacters of G. For n > 1, we can say
little at first glance about the modules VS and characters χS . However, in the course of this
section, we will show that these generalized characters retain many of the useful properties
of supercharacters.

For the duration of this section, fix an algebra group G = 1 + n and a decomposition
sequence S = {(λi, hi,Li,Ri, ii)}ni=0 ∈ D(G). As our first result, we show how to multiply
the vectors vS,i(λ) by elements of Li and Ri. We begin with the following definitions:

Definition 4. Given 0 ≤ i ≤ n, let αS,i : Li × hi → C× and βS,i : hi ×Ri → C× be the
maps defined recursively by

αS,0(g, λ) = 1, g ∈ L0, λ ∈ h0,

αS,i+1(g, λ) = θ ((g � λ)(λi − g � λi))αS,i(g, λi), g ∈ Li+1, λ ∈ hi+1, 0 ≤ i < n,

βS,0(λ, h) = 1, h ∈ R0, λ ∈ h0,

βS,i+1(λ, h) = θ ((λ� h)(λi − λi � h))βS,i(λi, h), h ∈ Ri+1, λ ∈ hi+1, 0 ≤ i < n.

for g ∈ Li, λ ∈ hi, and h ∈ Ri. As before, to simplify notation, we will typically omit the
second subscripts and write αS and βS when the context is clear.

We now have the following instrumental result:

Lemma 7.1. Let S = {(λi, hi,Li,Ri, ii)}ni=0 ∈ D(G) and λ ∈ hi for some 0 ≤ i ≤ n. Then
the following hold:

(1) gvS(λ) = αS(g, λ)vS(g � λ) for all g ∈ Li.

(2) vS(λ)h = βS(λ, h)vS(λ� h) for all h ∈ Ri.

Proof. The proofs of these identities are essentially identical, so we only show that gvS(λ) =
αS(g, λ)vS(g � λ). As usual, we proceed by induction on i. The lemma holds trivially for
i = 0, so suppose the lemma also holds for some i > 0. For g ∈ Li+1 and λ ∈ hi+1, we then
have

gvS(λ) =
1
|ii|

∑
X∈ii

θ (λ(X))αS,i(g, λi +X)vS(λi + g ∗X + g � λi − λi),
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by Lemma 6.1. Since by definition g � λi − λi ∈ ii, the map X 7→ g ∗ X + g � λi − λi
permutes the vector space ii. The inverse of this map is given by the transformation X 7→
g−1 ∗ X + g−1 � λi − λi, so by making the substitution X 7→ g ∗ X + g � λi − λi in the
preceding expression we obtain

gvS(λ) =
1
|ii|

∑
X∈ii

θ
(
λ(g−1 ∗X + g−1 � λi − λi)

)
αS,i(g, g−1 ∗X + g−1 � λi)vS(λi +X).

Since

αS,i(g, g−1 ∗X + g−1 � λi) = αS,i−1(g, λi−1)θ ((g � (g−1 ∗X + g−1 � λi))(λi−1 − g � λi−1))

= αS,i−1(g, λi−1)θ
(
ΦL
S,i+1[g](X + λi)

)
and λ(g−1 � λi − λi) = (g � λ)(λi − g � λi) + ΦL

S,i+1[g](g � λi − λi), this becomes

gvS(λ) =
c

|ii|
∑
X∈ii

θ ((g � λ)(X)) v(λi +X) = cvS(g � λ),

where c = θ((g � λ)(λi − g � λi))θ
(
ΦL
S,i+1[g](g � λi)

)
αS,i−1(g, λi−1) = αS,i+1(g, λ). Thus

(1) holds for i+ 1, and hence for all i by induction.

This result combined with Lemma 6.3 shows that for each λ ∈ hj , the vector vS(λ) =
vS,j(λ) ∈ CG is a simultaneous left and right eigenvector for each g ∈ LStabS(λi) and
h ∈ RStabS(λi) for all i < j. From here, we can almost say what the dimension of VS is, as
the next lemma clarifies.

Lemma 7.2. For any decomposition sequence S = {(λi, hi,Li,Ri, ii)}ni=0 ∈ D(G),

dim(VS) ≤ |G|
|LStabS(λn)|

= |G|
n∏
i=0

|Li � λi|
|hi|

.

Proof. Let G̃ ⊆ G be a set of coset representatives of G/LStabS(λn). Then every element
of G can be written g = xy where x ∈ G̃ and y ∈ LStabS(λn), so VS is spanned by elements
of the form gvS(λn) = αS(y, λn)xvS(λn). Hence dim(VS) ≤ |G|

|LStabS(λn)| . To complete the
proof of the lemma, we observe that

n∏
i=0

|hi|
|Li � λi|

=
n∏
i=1

|hi|
|Li|/|LStabS(λi−1)|

|LStabS(λi)|
|LStabS(λi−1)|

= |LStabS(λn)|,

where the first equality follows from the fact that |h0|
|L0�λ0| = 1, the second equality follows

from the fact that |Li|/|LStabS(λi−1)| = |ii−1| = |hi|, and the third equality follows from
the fact that |LStabS(λ0)| = 1.

With these preliminary lemmas, we can now answer some more substantial questions
about how the modules VS decompose the group algebra CG. In order to state these results
precisely, we require some further notation to describe the set of decomposition sequences
which can be formed by adding a single term to a given sequence S.

Since all decomposition sequences begin with the same first term, the set of decomposi-
tion sequences of an algebra group naturally forms a rooted tree, where the children of each
sequence S ∈ D(G) are simply the decomposition sequences which can be formed by ap-
pending a single term (λ, h,L,R, i) to S. In order to refer to such constructions, we observe
that each child of a sequence S is uniquely determined according to Definition 1 by a linear
functional λ ∈ i∗n. Therefore we adopt the following notation:
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Notation. Given a decomposition sequence S = {(λi, hi,Ri,Li, ii)}ni=0 ∈ D(G), let hS = i∗n
denote the dual space of in and let LS ⊆ Ln and RS ⊆ Rn denote the subgroups defined by

LS = {g ∈ Ln | g �n λn − λn ∈ in},
RS = {g ∈ Rn | λn �n g − λn ∈ in}.

LS and RS act on hS on the left and right by ∗ and � as defined as in Definition 1. Now, for
any λ ∈ hS , let iλ ⊆ hS denote the subspace iλ = LS�λ∩λ�RS−λ, and define S|λ ∈ D(G)
as the decomposition sequence formed by appending the final term (λ, hS ,LS ,RS , iλ) to S.

Given two sequences S, T ∈ D(G), we say that T is a child of S if T = S|λ for some λ ∈
hS . Likewise, we say that T is a descendent of S if there are sequences S = S0, S1, . . . , Sk =
T ∈ D(G) such that Si is a child of Si−1 for each i = 1, . . . , k. We naturally extend
these relations from decomposition sequences to the characters they index. With this these
additional definitions, we can now begin to describe when two decomposition sequences index
the same CG-module.

Lemma 7.3. Let S = {(λi, hi,Ri,Li, ii)}ni=0 ∈ D(G) be a decomposition sequence. If
λ, γ ∈ hS , then the following hold:

(1) If γ ∈ LS � λ, then VS|λ = VS|γ and MS|λ = MS|γ .

(2) If γ ∈ λ� RS , then VS|λ ∼= VS|γ and MS|λ = MS|γ .

Proof. To show (1), we note that if γ ∈ LS �λ then by the preceding lemma VS|γ = gVS|γ ⊆
VS|λ = g−1VS|λ ⊆ VS|γ for some g ∈ LS so we have equality throughout. For (2), we observe
that for any G-module V ⊆ CG, the map V → V g = {xg | x ∈ V } given by x 7→ xg for some
g ∈ G is a module isomorphism by the associativity of multiplication in G. If γ ∈ λ� RS ,
then by the preceding lemma VS|γ = VS|λg ∼= VS|λ for some g ∈ RS .

This lemma suggests a natural way of decomposing VS into submodules by choosing a
set of descendants of S. In particular, we have the following theorem:

Notation. Given a decomposition sequence S = {(λi, hi,Li,Ri, ii)}ni=0, let mS denote the
positive integer defined by

mS =
|G|/|in|

|LStabS(λn)|
=

n∏
i=0

|Li � λi � Ri|
|Li � λi|

.

Theorem 7.1. Fix a decomposition sequence S = {(λi, hi,Ri,Li, ii)}ni=0 ∈ D(G) and let
I ⊆ hS be a set of representatives of the two-sided orbits of hS under the � actions of LS
and RS . Then

χS =
1
mS

∑
λ∈I

mS|λχS|λ.

Proof. If n = 0, then VS = CG so dim(VS) = |G| and we have equality in Lemma 7.2. Now
suppose n > 0 and we still have equality in Lemma 7.2. In this case, if λ ∈ hS then the
lemma gives dim(VS|λ) ≤ |LS�λ|

|hS | dim(VS). With slight abuse of notation, write v = vS|λ for
all λ ∈ hS , and let uλ =

∑
γ∈LS�λ v(γ) ∈ VS|λ. Let IL ⊆ hS be a set of representatives of

the left orbits of hS under the � action of LS , and consider the sum∑
λ∈IL

uλ =
∑
λ∈hS

v(λ) =
1
|in|

∑
X∈in

vS(λn +X)
∑
λ∈hS

θ(λ(X)).

If X 6= 0, then the map hS → C× given by λ 7→ θ(λ(X)) is a nontrivial homomorphism so∑
λ∈hS

θ(λ(X)) = 0, while if X = 0 then
∑
λ∈hS

θ(λ(X)) = |hS | = |in|. Thus
∑
λ∈IL

uλ =
vS(λn), so since VS = CGv(λn), it follows that VS =

∑
λ∈IL

VS|λ. Here we use
∑

instead of
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⊕
to distinguish between a sum and direct sum. Since the characters of isomorphic modules

are the same, it then follows by assumption that

dim(VS) = dim
( ∑
λ∈IL

VS|λ

)
≤
∑
λ∈IL

dim(VS|λ) ≤
∑
λ∈IL

|LS � λ|
|hS |

dim(VS) = dim(VS).

All inequalities in this statement must therefore become equalities, which necessarily gives
VS =

⊕
λ∈IL

VS|λ. Since VS|λ ∼= VS|γ if γ ∈ λ � RS , and since there are exactly mS|λ
mS

=
|LS�λ�RS |
|LS�λ| distinct right orbits in the two-sided orbit LS � λ � RS , it follows that VS =⊕
λ∈I (VS|λ)⊕mS|λ/mS and χS = 1

mS

∑
λ∈I mS|λχS|λ. This implies as a corollary that

dim(VS|λ) = |LS�λ|
|hS | dim(VS) for all λ ∈ hS , so we have equality in Lemma 7.2. This proves

by induction that we have equality in Lemma 7.2 for all decomposition sequences, and in
turn that this lemma holds for all sequences.

The following properties are immediate from the theorem:

Theorem 7.2. For any decomposition sequence S = {(λi, hi,Li,Ri, ii)}ni=0 ∈ D(G), the
following hold:

(1) dim(VS) =
|G|

|LStabS(λn)|
= |G|

n∏
i=0

|Li � λi|
|hi|

.

(2) A basis for VS is given by the set
{
g1 . . . gn−1vS(λ) | gi ∈ L̃i, λ ∈ Ln � λn

}
, where L̃i

denotes a fixed set of representatives of the cosets Li/Li+1 for 0 < i < n.

(3) If λ, γ ∈ hS and γ /∈ LS � λ, then VS|λ ∩ VS|γ = {0}.

Proof. (1) was proved is the theorem. Given (1), it follows from Lemma 7.2 that the set
{xvS(λn) | x ∈ G̃} gives a basis for VS , where G̃ ⊆ G is a set of coset representatives of
G/LStabS(λn). Since we have a descending sequence of subgroups G = L0 ⊇ L1 ⊇ · · · ⊇
Ln ⊇ LStabS(λn), we can write G̃ as the product G̃ = L̃0L̃1 . . . L̃n where L̃i is a set of
coset representatives of Li/Li+1 for 0 ≤ i < n and L̃n is a set of coset representatives of
Ln/LStabS(λn). Since L0 = L1 we can omit L̃0 from this product. Likewise, since each
g ∈ L̃n has gvS(λn) = cvS(λ) for some c ∈ C× for a unique λ ∈ Ln � λn, we can omit
Ln as well and rewrite our basis in the form given in the theorem. (3) then follows from
dimensional considerations.

Now that we have developed some basic properties of the characters χS , we can describe
more elegantly how to construct them. In particular, we have the following result, which
forms an analogue to Theorem 5.4 in [7]:

Theorem 7.3. Fix a decomposition sequence S = {(λi, hi,Li,Ri, ii)}ni=0 ∈ D(G) of an
algebra group G, and let H ⊆ G be the algebra subgroup given by

H = LStabS(λn) = {g ∈ Ln | g �n λn = λn}.

Define τS : H → C× as the map given by by τS(g) = αS,n(g, λn) for g ∈ H. The τS is a
linear character of H, and χS = (τS)G is the character induced from τS .

Proof. Write τ = τS . That τ is a linear character of H is immediate, since by the Lemma
7.1 we have

ghvS(λn) = τ(h)gvS(λn) = τ(g)τ(h)vS(λn) = τ(gh)vS(λn)

for all g, h ∈ H, so τ : H → C× is a homomorphism. To prove the second half of the
theorem, we observe that τ is the character of the CH-module U = CHvS(λn) = CvS(λn).
It follows from (2) of the preceding theorem that we have a natural isomorphism IndG

H(U) =
CG⊗CH U = CG⊗CH CvS(λn) ∼= CGvS(λn) = VS , so χS = τG.
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This result gives rise to a natural corollary, stated below.

Corollary 7.1. Given a decomposition sequence S = {(λi, hi,Li,Ri, ii)}ni=0 ∈ D(G), let
WS denote the left CLn-module

WS = CLnvS(λn) = C-span{vS(λ) | λ ∈ Ln � λn}

and let ωS be its character. Then χS = (ωS)G is the character induced from ωS .

Proof. It follows by the argument given in the proof of the preceding theorem that ωS =
(τS)Ln , so χS = χS = (ωS)G.

We can give an explicit formula for the character ωS which generalizes the supercharacter
formula (4.3). In particular, we have the following result.

Theorem 7.4. Given a decomposition sequence S = {(λi, hi,Li,Ri, ii)}ni=0 ∈ D(G),

ωS(g) =
|Ln � λn|

|Ln � λn � Rn|
∑

λ∈Ln�λn�Rn

αS(g, λ),

for all g ∈ Ln.

Observe that if n = 1, then χS = ωS and L1 = R1 = G, so this result precisely describes
supercharacter formula given in Section 4. In order to prove the theorem, we require two
lemmas.

Lemma 7.4. Let S = {(λi, hi,Li,Ri, ii)}ni=0 ∈ D(G) be a decomposition sequence. If
g ∈ Li and λ ∈ hi such that g � λ = λ, then αS(g, λ) = αS(g, γ) for all γ ∈ λ� Ri.

Proof. Clearly the lemma holds for i = 0, so suppose i > 0. Fix g ∈ Li and λ ∈ hi,
and suppose there exists γ = λ � h for some h ∈ Ri such that αS(g, γ) 6= αS(g, λ). We
wish to show that this implies g � λ 6= λ. One can check that αS(g, γ) 6= αS(g, λ) implies
(λ� h− λ)(g−1 � λi−1 − λi−1) 6= 0. Since by Lemma 6.1 (g � λ− λ)(λi−1 � h−1 − λi−1) =
(λ� h− λ)(g−1 � λi−1 − λi−1), it follows that g � λ 6= λ, as desired.

Lemma 7.5. Let S = {(λi, hi,Li,Ri, ii)}ni=0 ∈ D(G) be a decomposition sequence. If
g ∈ Li and λ ∈ hi such that g � λ 6= λ, then

∑
γ∈λ�Ri

αS(g, γ) = 0.

Proof. Fix λ ∈ hi and let r = {λ � h − λ | h ∈ Ri} as in Lemma 6.2. Suppose g ∈ Li
such that g � λ 6= λ, and note then that necessarily i > 0. Since r is a subspace, the
evaluation map ξ : r → C× given by ξ(γ) = θ

(
γ(g−1 � λi−1 − λi−1)

)
is a homomorphism.

By assumption g�λ(X) 6= λ(X) for some X = λi−1−λi−1�h−1 ∈ ii−1 where h ∈ Ri. If Y =
λi−1−g−1 �λi−1 ∈ in−1, then by Lemma 6.1 we have (g−1 �λ−λ)(X) = (λ�h−λ)(Y ) 6= 0
so ξ(λ � h − λ) 6= 1. Thus ξ is nontrivial so

∑
γ∈r ξ(γ) = 0 and

∑
γ∈λ�Ri

αS(g, γ) =
αS(g, λ)

∑
γ∈r ξ(γ) = 0.

We can now prove the theorem.

Proof of Theorem 7.4. By the preceding lemmas, if g ∈ Ln and λ ∈ hn then

gvS(λ)
∣∣
vS(λ)

=
1

|λ� Rn|
∑

γ∈λ�Rn

αS(g, γ) =
{
αS(g, λ), if g � λ = λ
0, otherwise.
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Let ρ1, . . . , ρk ∈ Ln � λn be representatives of the distinct right orbits in Ln � λn � Rn.
Then

ωS(g) =
∑

λ∈Ln�λn

1
|λn � Rn|

∑
γ∈λ�Rn

αS(g, γ) =
k∑
i=1

|Ln � λn ∩ ρk � Rn|
|λn � Rn|

∑
γ∈ρk�Rn

αS(g, γ)

=
k∑
i=1

|Ln � λn ∩ λn � Rn|
|λn � Rn|

∑
γ∈ρk�Rn

αS(g, γ) =
|Ln � λn|

|Ln � λn � Rn|

k∑
i=1

∑
γ∈ρk�Rn

αS(g, γ)

=
|Ln � λn|

|Ln � λn � Rn|
∑

λ∈Ln�λnRn

αS(g, λ).

Our next result shows that, like supercharacters, the characters χS has disjoint con-
stituents which partition Irr(G). Before proceeding, we recall some relevant notation.
Given an arbitrary set of irreducible characters X ⊆ Irr(G), let σX denote the character
σX =

∑
ψ∈X ψ(1)ψ. Recall that each two-sided ideal I of a group algebra CG is the direct

sum of the minimal ideals that it contains. These minimal ideals, moreover, correspond to
the irreducible characters of G, and if X is the set of irreducible characters corresponding
to minimal ideals contained in the ideal I, then I, viewed as a left CG-module, affords the
character σX . We now have the following result, which generalizes Theorem 5.5 in [7]:

Theorem 7.5. Fix a decomposition sequence S = {(λi, hi,Li,Ri, ii)}ni=0 ∈ D(G) and let
X ⊆ Irr(G) denote the set of irreducible constituents of χS . Then the following hold:

(1) mSχS = σX .
(2) Let I ⊆ hS be a set of representatives of the two-sided orbits of hS under the �-actions

of LS and RS . If Xλ is the set of irreducible constituents of χS|λ for λ ∈ I , then the
sets Xλ partition X .

Proof. By definition MS is a two-sided ideal in CG given by a direct sum of a number of
copies of VS ; in particular, given by the direct sum of all right translates of VS . As such,
(1) is equivalent to the statement that the CG-module MS affords the character mSχS , or
that MS is a direct sum of mS copies of VS . We prove this by induction on the length n
of the sequence S. If n = 0 then vS(λn) = 1 + λn ∈ n and MS = CG = VS , so clearly
MS = V ⊕mSS as mS = 1. Suppose n > 0 and this still holds. Then for any λ ∈ hS , it
follows from Lemma 7.1 that each copy of VS in MS contains mS|λ

mS
= |LS�λ�RS |

|LS�λ| copies of
VS|λ. Since MS|λ consists of all right translates of VS|λ and since each of these modules must
appear as a submodule of some right translate of VS , it follows that MS|λ = V

⊕mS|λ
S|λ . Hence

MS = V ⊕mSS for all decomposition sequences of length n+ 1, and so by induction the same
is true for all n. Therefore mSχS = σX .

To prove (2), we observe that since hS is a disjoint union of the two-sided orbits LS �
λ� RS for λ ∈ I , it follows from Lemma 7.1 that MS is the direct of the submodules MS|λ
for λ ∈ I . Since MS affords the characters mSχS , it follows that

σX = mSχS =
∑
λ∈I

mS|λχS|λ =
∑
λ∈I

σXλ .

By definition the multiplicity of each irreducible constituent of one of the characters σXλ for
λ ∈ I is equal to its degree, which is also equal to its multiplicity in σX . Therefore the sets
Xλ for λ ∈ I must be disjoint. Since their union is X , the sets Xλ form a partition of X .

Recall the familiar inner product 〈 , 〉 on the space of complex-valued functions G→ C
defined by

〈χ, ψ〉 =
1
|G|

∑
g∈G

χ(g)ψ(g)
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for χ, ψ : G→ C. The following lemma tells us how to evaluate the inner product 〈χS|λ, χS|γ〉
given a decomposition sequence S ∈ D(G) and λ, γ ∈ hS , and this gives us a condition for
determining when the module VS is irreducible.

Theorem 7.6. Given a decomposition sequence S = {(λi, hi,Li,Ri, ii)}ni=0 ∈ D(G) and
λ, γ ∈ hS ,

〈χS|λ, χS|γ〉 =
{
|LS � λ ∩ λ� RS |, if γ ∈ LS � λ� RS

0, otherwise.

Proof. Given an arbitrary subset X ⊆ Irr(G), recall that σX (1) =
∑
ψ∈X ψ(1)2 = 〈σX , σX 〉.

SincemS|λχS|λ = σX for some X ⊆ Irr(G), we havem2
S|λ〈χS|λ, χS|λ〉 = 〈mS|λχS|λ,mS|λχS|λ〉 =

〈σX , σX 〉 = σX (1) = mS|λχS|λ(1). Hence

〈χS|λ, χS|λ〉 =
χS|λ(1)
mS|λ

=
|G|

|LStabS|λ(λ)|
|LStabS|λ(λ)|
|G|/|iλ|

= |iλ| = |LS � λ ∩ λ� RS |.

The first half of the theorem now follows from the fact that χS|λ = χS|γ if γ ∈ LS �λ� RS .
Alternatively, if γ /∈ LS � λ � RS then χS|λ and χS|γ have disjoint sets of irreducible
constituents, in which case 〈χS|λ, χS|γ〉 = 0.

Interpreting this result with different notation, we have the following corollary.

Corollary 7.2. If S = {(λi, hi,Li,Ri, ii)}ni=0 ∈ D(G), then 〈χS , χS〉 = |in|. Hence the
module VS and character χS are irreducible if and only if in = {0}.

We conclude this section with an analogue of Corollary 5.12 in [7].

Corollary 7.3. Let S = {(λi, hi,Li,Ri, ii)}ni=0 ∈ D(G) and suppose χS has a linear con-
stituent. Then Li � λi = Li � λi � Ri = λi � Ri for all 0 ≤ i ≤ n.

Proof. Since mSχS = σX =
∑
ψ∈X ψ(1)ψ for some X ⊆ Irr(G), mS must divide the degree

of each irreducible constituent ψ ∈ X . If one of these constituents is linear so that its degree
is one, then we must have mS = 1. But mS is the product of the number of left orbits and
the product of the number of right orbits in Li�λi�Ri, so each Li�λi�Ri must be given
by one left orbit and by one right orbit.

We summarize the results of this section as follows. Given a decomposition sequence
S = {(λi, hi,Li,Ri, ii)}ni=0 ∈ D(G), we defined a certain map vS,i : hi → CG, and used
this map to define a module VS with character χS . We then showed how to decompose VS
into submodules by extending the sequence S, and described how the information stored in
S determines a basis for VS and its dimension. In addition, we described how to determine
if VS is irreducible, and proved that mSχS = σX for some subset X ⊆ Irr(G). Finally, we
showed that each χS is induced from a linear character of an algebra subgroup of G. In the
next section we discuss how to choose a set of representative sequences in D(S) to decompose
the group algebra CG, and show that the resulting decomposition is uniquely determined
by G.

8 Decomposition trees

Constructing a decomposition sequence certainly involves a number of more or less arbitrary
choices of representatives λi. In this section we show that such choices have no effect on the
characters we ultimately obtain, and that any reasonable method of inductively building up
a “representative” set of all decomposition sequences of an algebra group results in the same
set of characters.

The results of the last section show that given S ∈ D(G), we can decompose the module
VS into a direct sum of non-isomorphic submodules by computing a set I of representa-
tives of the two-sided �-orbits in hS and then forming the descendent sequences S|λ and
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corresponding modules VS|λ for λ ∈ I . It follows that we can decompose the group alge-
bra CG into a direct sum of non-isomorphic submodules by beginning with the unique one
term decomposition sequence R = {(0, n,G,G, n)} ∈ D(G), and then inductively applying
the preceding process to VR and all resulting submodules. In this way we can construct an
infinite rooted subtree T ⊆ D(G) of decomposition sequences with the following properties:

1. The root of T is R = {(0, n,G,G, n)} ∈ D(G).

2. If the children of S ∈ T are {Si}, then χS = 1
mS

∑
imSiχSi and 〈χSi , χSj 〉 = 0 if i 6= j.

3. If {Si} ⊆ T are the nodes of T of height h, then the character of CG is χG =∑
imSiχSi .

We call such a structure a decomposition tree of G. To make this notion precise, we give the
following definition:

Definition 5. A decomposition tree T of an algebra group G is an infinite subtree of D(G)
with the following properties:

(1) T contains the unique one term decomposition sequence R = {(0, n,G,G, n)} ∈ D(G).

(2) If S ∈ T , then there exists a set of representatives I ⊆ hS of the two-sided �-orbits
in hS such that S|λ ∈ T for λ ∈ hS if and only if λ ∈ I .

By construction, a decomposition tree T indexes a tree of characters of G. To refer to
this set, we have the following notation:

Notation. Given any subset S ⊆ D(G) let Ŝ = {χS | S ∈ S } denote the set formed by
replacing each sequence in S with the character of G which it indexes.

Under this notation, for any decomposition tree T , the set T̂ forms an infinite tree whose
root is the character χG of regular representation of G. Each node of T̂ is a constituent of
its parent which decomposes as as sum of its children. More strongly, by Lemma 7.5, the
irreducible constituents of sibling nodes in T̂ partition the irreducible constituents of their
parent.

The decomposition tree T ⊆ D(G) clearly depends on our choices of representatives at
each stage in its construction. The following theorem shows, however, that the character
tree T̂ is independent of T and depends only on G. Due to this result, we can index all of
the modules VS for S ∈ D(G) by constructing a single arbitrary decomposition tree T .

Theorem 8.1. If T ,T ′ ⊆ D(G) are decomposition trees of an algebra group G = 1 + n,
then T ∼= T ′ and T̂ = T̂ ′. In other words, there exists a graph isomorphism f : T → T ′

such that χS = χf(S) for all S ∈ T .

To prove this theorem, we require the following lemma:

Lemma 8.1. Suppose S, S′ ∈ D(G) are decomposition sequences such that χS = χS′ . Then
{χS|λ | λ ∈ hS} = {χS′|λ | λ ∈ hS′}.

Proof. Let S = {(λi, hi,Li,Ri, ii)}ni=0 and S′ = {(λ′i, h′i,L
′
i,R

′
i, i
′
i)}n

′

i=0 with χS = χS′ . First
suppose n = n′ and all terms of the two sequences agree except λn 6= λ′n and in 6= i′n. Then
λ′n = g � λn � h for some g ∈ Ln and h ∈ Rn, and it follows directly that LS′ = gLSg−1,
RS′ = h−1Rnh, and i′n = g � in � h− Φ where

Φ(X) = X(g � λn−2 � h− λn−2), for X ∈ i′n−1.

Given these observations, it follows by an argument similar to the proof of Lemma 7.1 that
for any λ ∈ hS , gvS|λ(λ)h = kvS′|λ′(λ′) for some k ∈ C and λ′ ∈ hS . Therefore each χS|λ is
equal to some χS′|λ′ , so {χS|λ | λ ∈ hS} ⊆ {χS′|λ | λ ∈ hS′}, and the reverse containment
follows by symmetry.

Suppose n = n′ but S and S′ differ in more than the last term. If the two sequences
agree in the first k terms but λk 6= λ′k, then we must have λ′k = g � λk � h for some g ∈ Lk
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and h ∈ Rk. One can then show by induction that set the modules of the form gVS|λh are
equal to the set of modules of the form VS′′|λ′′ for some decomposition sequence S′′ of length
n which agrees with S′ in the first k+ 1 terms. Using this fact and inductively applying the
preceding argument then shows that if S, S′ ∈ D(G) has the same length and χS = χS′ ,
then the two characters have the same children.

If n 6= n′, then without loss of generality we can assume that n > n′ and in−1 = hn−1.
Let R ∈ D(G) be the subsequence of S given dropping the last term, and note that χR = χS
since the χS is a constituent of χR with the same degree. Now observe that since LS = Ln
and RS = Rn, it follows that LS � 0 = 0 � RS = hS for 0 ∈ hS . Hence there is only one
left, right, and two-sided �-orbit in hS , all of which coincide, and so {χS|λ | λ ∈ hS} =
{χR|λ | λ ∈ hR} = {χS}. Therefore we can replace S with R, and by repeatedly applying
such substitutions we can assume n = n′ and turn to the preceding argument.

We can now prove the theorem.

Proof of Theorem 8.1. Let the root nodes of T and T ′ be the unique one-term decompo-
sition sequence R ∈ D(G). Define f : T → T ′ as the unique map with the following
properties:

(1) f(R) = R.

(2) If S ∈ T and S|λ ∈ T for some λ ∈ hS , then f(S|λ) = S′|λ′ where S′ = f(S) and
λ′ ∈ hS′ is the unique representative such that S′|λ′ ∈ T ′ and χS|λ = χS′|λ′ .

By the lemma, this map is a well-defined graph isomorphism, and by construction χS = χf(S)

for all S ∈ T .

Lemma 8.1 yields the following corollary, which shows that in addition to being unique,
the character tree T̂ is effectively finite:

Corollary 8.1. Let S = {(λi, hi,Li,Ri, ii)}ni=0 ∈ D(G) be a decomposition sequence. If
n > 0 and hn = in, then χS = χT for every T ∈ D(G) which is a descendent of S.

Proof. If hn = in then Ln � λn = |hn| . Assume n > 0 and let S′ = {(λi, hi,Li,Ri, ii)}n−1
i=0 .

Then it follows from Theorem 7.2 that χS(1) = χS′(1), so since χS is a constituent of χS′ , we
must have χS = χS′ . Therefore by the lemma we have {χS|λ | λ ∈ hS} = {χS′|λ | λ ∈ hS′},
and since there is evidently only one two-sided �-orbit in hn, it follows that {χS|λ | λ ∈
hS} = {χS′|λ | λ ∈ hS′} = {χS}. Therefore by induction χS = χT for every descendent T of
S.

Recall that the rank of a decomposition sequence S = {(λi, hi,Li,Ri, ii)}ni=0 ∈ D(G),
denoted rank(S), is the least positive integer r ≤ n such that |ir| = |ir+1|, or n if no such
r exists. We say that a decomposition sequence S = {(λi, hi,Li,Ri, ii)}ni=0 is full rank if
rank(S) = n. The preceding corollary then shows that every character χS for S ∈ D(G) is
obtained from a decomposition sequence with full rank. To index such characters, we define
a complete decomposition tree of an algebra group G as the subtree of full rank sequences in
some decomposition tree. A complete decomposition tree is necessarily finite, and indexes
all the distinct characters χS for S ∈ D(G). Intuitively, one forms a complete decomposition
tree by cutting off the infinite branches of degenerate sequences in an ordinary decomposition
tree.

Given these definitions, we can now summarize the main results of this section with the
following theorem:

Theorem 8.2. Let T ⊆ D(G) be a complete decomposition tree of an algebra group
G = 1 + n, and let L ⊆ T denote the set of its leaf nodes. Then the following hold:

(1) The character tree T̂ = {χS | S ∈ T } is independent of T and depends only on G,
and is equal to {χS | S ∈ D(G)} as a set.
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(2) If S ∈ T and LS ⊆ L is the set of leaf nodes which are descendants of S, then the
character χS decomposes as the sum

χS =
1
mS

∑
T∈LS

mTχT .

In particular, the character χG of the regular representation of G decomposes as the
sum

χG =
∑
S∈L

mSχS .

(3) If S, T ∈ T , then 〈χS , χT 〉 = 0 unless T is a descendent of S or vice versa. Thus every
irreducible character of G appears as a constituent of χS for exactly one S ∈ L .

By Corollary 8.1 the recursive constructions described in the preceding sections fail to
decompose the leaf characters χS for S ∈ L any further. One might hope that, as result, all
the characters in L̂ are irreducible, but in general this does not hold, at least over C. For a
simple counterexample, consider the following:

Example. Let G = 1 + n be the algebra group over F2 given by

G =


 1 a b

0 1 a
0 0 1

 | a, b ∈ F2

 =

〈 1 1 0
0 1 1
0 0 1

〉 ∼= Z4.

G is isomorphic to the cyclic group of order four, and so has two irreducible characters with
non-real values. Since the image of the homomorphism θ : F+

2 → C× is just {−1, 1}, our
constructions only generate real characters so the leaf nodes of the character tree T̂ cannot
possibly be all irreducible. To see this explicitly, note that we have n = F2-span{X,Y } where

X =

 0 0 1
0 0 0
0 0 0

 and Y =

 0 1 0
0 0 1
0 0 0

 ,

and so n∗ = F2-span{η, ρ} where

η(X) = 1,
η(Y ) = 0,

and
ρ(X) = 0,
ρ(Y ) = 1.

Under this notation, S = {(λi, hi,Li,Ri, ii)}1i=0 = {(0, n,G,G, n), (η, n∗,G,G, n∗)} forms a
two-term decomposition sequence with 〈χS , χS〉 = |L1 �1 λ1 ∩ λ1 �1 R1| = |{η, η + ρ}| = 2
and h1 = i1 = n∗. Hence χS is reducible, but by Corollary 8.1 our methods fail to decompose
χS any further. One can check that χS is equal to the sum of the two non-real irreducible
characters of G, and that the other two irreducible characters of G are obtained from the
two-term decompositions sequences with λ1 = 0 and λ1 = ρ.

We call sequences of this kind degenerate. That is, a decomposition sequence S ∈ D(G)
is degenerate if χS is reducible but equal to all of its descendants. By Corollary 8.1, this
is equivalent to saying that |in−1| = |in| > 1. Given this definition and the preceding
counterexample, one naturally asks if characters indexed by degenerate sequences are in
any sense irreducible. Answering this question goes beyond the scope of this work, but a
reasonable conjecture might be that such characters are irreducible over Qp, the cyclotomic
subfield of the complex numbers given by adjoining a primitive pth root of unity to the
rationals. Observe that the image of our homomorphism θ : F+

q → C× lies in Qp, and
so all of our constructions thus far could be defined solely over this field. Admittedly we
have little evidence at this time to support such a broad conjecture, but we also lack any
counterexamples.
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9 Decomposing CUn(Fq)
In this final section, we discuss how to apply the theory developed in this work to a particular
family of algebra groups: namely, the groups Un(Fq) of n×n upper triangular matrices over
Fq with ones on the diagonal. We have several reasons for examining this specific family.
On the one hand, every algebra group appears as a subgroup of Un(Fq) for some choice of
n and q, and so this family represents a natural starting point for nontrivial applications of
our theory. At the same time, we can compute the decomposition sequences of Un(Fq) much
more efficiently than those of a general algebra group due to several properties particular to
Un(Fq). Such optimizations allow us to make computations which were formerly unfeasible.
Finally, and most importantly, by explicitly computing the modules described in previous
sections, we will be able to provide constructive proofs of some surprising properties of the
irreducible characters of Un(Fq).

In particular, [11] proves that the irreducible characters of Un(F2) are real-valued for
n < 13 but that, remarkably, U13(F2) has exactly two irreducible characters with non-real
values. The proof of this result comes from a recursive formula for counting the number of
involutions of Un(F2), and as such is highly non-constructive. We will be able to describe the
modules of these characters explicitly in terms of the theory developed in preceding sections.
Using these constructions we will be able to answer several formerly inaccessible questions
regarding the basic properties of these characters.

In this direction, we first observe that for any algebra group G = 1 + n, we have the
following general algorithm for computing a complete decomposition tree T :

Algorithm 1. Let G = 1 + n. To compute a complete decomposition tree T of G:

1. Declare a queue of decomposition sequences Q and an empty decomposition tree T .

2. Add the one term decomposition sequence R = {(0, n,G,G, n)} to Q.

3. While Q is not empty, repeat:

a. Let S = {(λi, hi,Li,Ri, ii)}ni=0 be the next element dequeued from Q.
b. If |in| > 1 and |in| 6= |hn|:

i. Compute coset representatives of LS/LStabS(λn−1) and RS/RStabS(λn−1).
ii. Compute the two-sided orbits � in hS and choose a set of representatives I .

iii. For each λ ∈ I , compute iλ.
iv. Enqueue the decomposition sequences S|λ for λ ∈ I in Q.

c. Insert S into the tree T .

4. Return T .

In order to implement this algorithm efficiently, one should make use of the following basic
optimizations. First, because for any decomposition sequence S = {(λi, hi,Li,Ri, ii)}ni=0 we
have LStabS(λi−1) ⊆ LStabS(λi) ⊆ Li and RStabS(λi−1) ⊆ RStabS(λi) ⊆ Ri for all i, it
is not necessary to store or compute the groups Li and Ri at each stage. Instead, it suffices on
each iteration to find a set of coset representatives of the quotient groups Li/LStabS(λi−1)
and Ri/LStabS(λi−1). On the next iteration, one can then form a new set of representatives
by taking a subset of the previous set. This optimization dramatically decreases the amount
of time and memory required to partition hS into two-sided orbits on successive iterations.

Our second optimization concerns the computation of the �-orbits of a given λ ∈ hS .
A natural way of computing all two-sided �-orbits in hS goes as follows: form a set h S
containing all the elements of hS , then repeatedly choose an arbitrary λ ∈ h S, compute
its two-sided orbit, and remove those elements from h S until the set is empty. Given an
arbitrary λ ∈ hS , one can efficiently compute LS � λ � RS by making use of the following
facts given in Section 6:

(1) If g � λ = λ+ γ for some g ∈ LS , then g � λ� h = λ� h+ γ ∗ h for any h ∈ RS .

(2) The ∗-action of RS on hS is linear.
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(3) The left orbit LS � λ is given by the affine set LS � λ = λ+ l, where l is a subspace.

These observations lead to the following algorithm for simultaneously computing LS � λ,
λ� RS , and LS � λ� RS :

Algorithm 2. Let S = {(λi, hi,Li,Ri, ii)}ni=0 be a decomposition sequence and fix λ ∈ hS .
To compute the orbits LS � λ, λ� RS , and LS � λ� RS :

1. Compute the left orbit LS � λ by evaluating g � λ for g ∈ LS/LStabS(λn).

2. Find a basis B for the vector space l = LS � λ− λ.

3. For each h ∈ RS/RStabS(λn):

a. Compute λ� h and γ ∗ h for γ ∈ B.
b. Add λ� h to the right orbit λ� RS .
c. Add λ� h+ Fq-span{γ ∗ h | γ ∈ B} to the two-sided orbit LS � λ� RS .

4. Return LS � λ, RS � λ, and LS � λ� RS .

Finding a basis B for l and computing the vector space Fq-span{γ∗h | γ ∈ B} can generally
be done much more efficiently than directly computing the right translates of LS � λ. As
a result, this algorithm typically represents a vast improve over naive methods for finding
LS �λ� RS , since it effectively only requires the computation of the left and right orbits of
λ ∈ hS , which are already needed to compute iλ.

These improvements apply to any algebra group, but several properties specific to the
groups Un(Fq) allow us to speed up these algorithms even further. First, we can describe
the rank one decomposition sequences of Un(Fq) explicitly in terms of familiar combinatorial
objects for all n and q, and this allows us to complete the first iteration of Algorithm 1 is
essentially constant time. The rank one decomposition sequences index the supercharacters
of Un(Fq), and from Section 5 it follows that every such sequence is of the form S =
{(0, n,G,G, n), (λ, n∗,G,G, iλ)} where G = Un(Fq) and n = un(Fq), and λ ∈ n∗ is a linear
functional represented by an n× n upper triangular matrix with zeros on the diagonal and
with at most one nonzero position in each row and column. Given such an S, we can
easily describe a basis for the vector space iλ and generating sets for the quotient groups
LS/LStabS(λ) and RS/RStabS(λ). Our general algorithms provide ways of computing
the latter groups but not their generators, and knowing these generators allows us to replace
the iterative computation of the left and right orbits in Algorithm 2 with a more efficient
recursive method. The following proposition states our result concerning these computations:

Notation. Let eij denote an n× n matrix with 1 in position (i, j) and zeros elsewhere.

Proposition 9.1. Let G = Un(Fq) and n = un(Fq). Suppose λ ∈ n∗ is a linear functional
viewed as an n × n upper triangular matrix with zeros on the diagonal and at most one
nonzero position in each row and column. As usual, let supp(λ) denote the set of positions
(i, j) with λij 6= 0. Now define three sets of positions by

Iλ = {(j, k) | there are i < j < k < l with (i, k), (j, l) ∈ supp(λ)},
Lλ = {(i, j) | there are i < j < k < l with (i, k), (j, l) ∈ supp(λ)},
Rλ = {(k, l) | there are i < j < k < l with (i, k), (j, l) ∈ supp(λ)}.

Let S = {(0, n,G,G, n), (λ, n∗,G,G, iλ)} be the rank one decomposition sequence indexed
by λ. Then

iλ = Fq-span{ejk ∈ n∗ | (j, k) ∈ Iλ},
G/LStabS(λ) = 〈1 + teij | (i, j) ∈ Lλ, t ∈ Fq〉,
G/RStabS(λ) = 〈1 + tekl | (k, l) ∈ Rλ, t ∈ Fq〉,

and we can identify
hS = i∗λ

∼= Fq-span{ejk ∈ n | (j, k) ∈ Iλ},

where γ ∈ hS is evaluated at X ∈ iλ by γ(X) =
∑

(i,j)∈Iλ γijXij .

28



Proof. The left �-action of 1− teij ∈ G on λ ∈ n∗ adds the ith row of λ multiplied by t to
the jth row. Likewise, the right �-action of 1− teij on λ add the jth column of λ multiplied
by t to the ith column. From this observation, it follows directly that every element in
G � λ is of the form λ + γ where the support of γ is a subset of the positions above the
diagonal which lie below positions in supp(λ). Likewise every element in λ � G is of the
form λ + γ where supp(γ) is a subset of the positions which lie to the left of positions in
supp(λ). Therefore the given basis for iλ follows by definition. To prove the other parts of
the proposition, observe that if (i, j) ∈ Lλ has i < j < k < l with (i, k), (j, l) ∈ supp(λ),
then (1− teij) � λ− λ = tλikejk ∈ iλ for any t ∈ Fq. It follows with a little work that every
element of iλ is of the form g � λ− λ where g is given by an appropriately ordered product
of elements 1− tijeij for (i, j) ∈ Lλ and tij ∈ Fq. This results in the given generating set of
G/LStabS(λ), and the argument for G/RStabS(λ) is identical.

The following example provides a visual explanation of the definitions given in this propo-
sition.

Example. Suppose λ ∈ n∗ is given by

λ =



0 0 0 1 0 0 0
0 0 0 1 0 0

0 0 0 1 0
0 0 0 1

0 0 0
0 0

0

 .

The sets Iλ, Lλ, Rλ are then given by the positions marked � in the following matrices:
0 0 0 0 0 0 0

0 0 � 0 0 0
0 � � 0 0

0 � � 0
0 0 0

0 0
0

 ,

Iλ


0 � � 0 0 0 0

0 � � 0 0 0
0 � 0 0 0

0 0 0 0
0 0 0

0 0
0

 ,

Lλ


0 0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0

0 � � 0
0 � �

0 �
0

 .

Rλ

Using the algorithms described above with the accompanying optimizations, we were
able to compute complete decompositions trees for Un(Fq) for n ≤ 12. For n ≤ 10, we
made this calculation using a single computer with code written in Java. For each n ≤ 7
the computation finished within a few seconds; for n = 8, it took around thirty seconds; for
n = 9, it took a couple of minutes; and for n = 10, it took about half an hour. For n = 11 and
n = 12 we divided the computations across about forty computers running remote processes
on the Stanford network. With this increased computing power, we were able to calculate
a complete decomposition tree for U11(F2) within two hours and for U12(F2) within eight
hours. None of the resulting trees contained any degenerate sequences, and so we have
the following theorem, which was shown non-constrively in [11]. To state it, recall that a
character is realizable over a field K if χ is the character of a representation ρ : G→ GL(V )
whose image lies in a matrix ring over K. If χ is realizable over K then its values lie in K,
but the converse is not true in general.

Theorem 9.1. If n ≤ 12, then every character of Un(F2) is realizable over Q. In fact,
every irreducible character of Un(F2) is given by χS for some decomposition sequence S ∈
D(Un(F2)).

A table of the number of irreducible characters obtained in each rank of our decomposition
trees appears below. The totals in the last column are taken from the formulas given in [4],
but one can check that these numbers are also given by the sum of the preceding columns.
Observe that the Rank 1 column gives the familiar Catalan numbers, as these count the
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n Rank 0 Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 |Irr(Un(F2))|
1 1 1
2 0 2 2
3 0 5 5
4 0 14 2 16
5 0 42 19 61
6 0 132 141 2 275
7 0 429 974 27 1430
8 0 1430 6747 327 2 8506
9 0 4862 48594 3714 35 57205
10 0 16796 371881 42871 563 2 432113
11 0 58786 3062536 511573 8350 43 3641288
12 0 208012 27315986 6415025 124984 863 2 27523998

Figure 1: Numbers of irreducible characters of Un(F2) obtained in each rank

number of irreducible supercharacters of Un(F2). The other columns do not appear to
correspond to any well-known sequences.

For even n, there appear to be exactly two irreducible characters of Un(F2) obtained in
rank n/2. We can describe a simple construction for these characters over any finite field Fq.
Assume n is even, and consider the set partition λ given by 1, 3, 5, . . . , n− 1

∣∣ 2, 4, 6, . . . , n.
In other words, let λ ∈ u∗n(Fq) be the matrix with ones on the diagonal containing positions
(1, 3) and (n− 2, n):

λ =



0 0 1
0 0 1

. . .
. . .

. . .

0 0 1
0 0

0

 .

If S = {(λi, hi,Li,Ri, ii)}n/2i=0 is any decomposition sequence with λ2 = λ, then hi has a
single two-sided �-orbit for i < n/2 − 1 while hn/2−1 has exactly q orbits, each of size one.
It follows that χλ has q irreducible constituents of rank n/2, so in particular the height of
any complete decomposition tree of Un(Fq) is unbounded as a function of n.

We know that Theorem 9.1 does not hold for n ≥ 13. In particular, [11] proves that
U13(F2) has exactly two irreducible characters with non-real values. As our final result,
we provide an explicit construction of these characters using decomposition sequences. In
particular, we demonstrate a degenerate decomposition sequence indexing a character with
two irreducible constituents. We then show how to decompose this character into a sum
χ + χ, and explicitly evaluate χ on an element of U13(F2) to prove that χ and χ take
non-real values.

The task of finding the degenerate sequence in question poses a non-trivial computational
problem in its right. Computing a complete decomposition tree for U13(F2) is a feasible but
time consuming solution, given the growth rates displayed in this calculation for n ≤ 12.
Luckily, a simple observation vastly diminishes the number of sequences we need to consider
in our search.

Consider the antitranspose map † which flips a matrix about the lower-left/upper-right
diagonal. This map gives an outer automorphism of Un(Fq) and permutes the set of matrices
indexing the supercharacters of Un(Fq)−i.e., the upper triangular matrices given by diagrams
of set partitions. It is easy to see from the supercharacter formula (4.3) that χλ ◦ † = χ†(λ)

for all λ ∈ u∗n(Fq). Also, note that the two non-real irreducible characters χ, χ of U13(F2)
must appear as constituents of the same supercharacter since the supercharacters of Un(F2)
are always real-valued. Since χ ◦ † is also an irreducible character with non-real values, it
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follows that χ is a constituent of the supercharacter χλ only if χ is also a constituent of
χλ ◦ † = χ†(λ). As the constituents of distinct supercharacters are disjoint, we conclude the
supercharacter χλ of U13(F2) has a non-real valued constituent only if λ = †(λ).

Thus to find the character in question, we need only construct the constituents of the
supercharacters χλ of U13(F2) indexed by set partitions which are fixed points of the an-
titranspose map. The number of such set partitions in given by sequence A080107 in [13],
and its thirteenth term is only 16033. This is less than the number of supercharacters of
U10(F2)−which is 21147, the tenth Bell number−and so our previously formidable search
has been reduced to an “almost” trivial computation. Of course the vector spaces iλ for
set partitions of 13 are generally several orders of magnitude larger than the corresponding
spaces for set partitions of 10, but this still does not render our search infeasible.

Using the same code as in our previous computations, we calculated all descendants of the
supercharacters χλ with †(λ) = λ. We found exactly one degenerate decomposition sequence,
and by the preceding argument the two irreducible characters with non-real values must be
constituents of the character indexed by this sequence. The following theorem states some
consequences of this discovery, and its proof describes the construction of the corresponding
degenerate sequence.

Theorem 9.2. The two complex irreducible characters χ, χ of U13(F2) are induced from
linear characters of the algebra group

H =





1 • • • • • • • • • • • •
1 a • a • • • • • • • •

1 b 0 0 0 • • • • • •
1 0 0 0 c • 0 • • •

1 b • • • • • • •
1 b • • • • • •

1 c • • • • •
1 • 0 0 • •

1 0 0 0 •
1 • • •

1 • •
1 •

1



| a, b, c, • ∈ F2



,

where, as usual, we use the symbol • to label positions whose values in an element of H can
be chosen independently of all other positions. In addition, the following hold:

(1) χ(1) = χ(1) = 216, and all real-valued characters of U13(F2) are realizable over R.

(2) χ and χ are constituents of the supercharacter indexed by the set partition

λ = 1, 5, 7, 9, 13
∣∣ 2, 6, 8, 12

∣∣ 3, 10
∣∣ 4, 11

or equivalently by the 13× 13 matrix

λ = e1,5 + e2,6 + e3,10 + e4,11 + e5,7 + e6,8 + e7,9 + e8,12 + e9,13.

(3) χ and χ are not the only constituents of this supercharacter. In particular, χλ decom-
poses as the sum of 98 distinct irreducible characters

χλ = 16χ+ 16χ+ 8
24∑
i=1

αi + 16
56∑
i=1

βi + 32
16∑
i=1

γi,

where αi, βi, γi are real-valued with degrees αi(1) = 215, βi(1) = 216, and γi(1) = 217.

(4) χ and χ have values of ±256i, where i =
√
−1, on the pair conjugacy classes of G

which contain elements not conjugate to their inverses. On all other conjugacy classes,
χ and χ have real values.
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Remark. (1) was conjectured by Isaacs and Karagueuzian in [11].

Proof. Write G = U13(F2). We construct a decomposition sequence S = {(λi, hi,Li,Ri, ii)}4i=0 ∈
D(G) by the following process. First, let λ0 = 0 ∈ u13(F2), and let λ1 ∈ h1 = u∗13(F2) be
the linear functional corresponding to the set partition 1, 5, 7, 9, 13 | 2, 6, 8, 12 | 3, 10 | 4, 11;
in other words, let λ1 = e1,5 + e2,6 + e3,10 + e4,11 + e5,7 + e6,8 + e7,9 + e8,12 + e9,13. In
the notation of Proposition 9.1, the set Iλ1 is then given by the positions marked � in the
following matrix: 

0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 � 1 0 0 0 0 0 0 0

0 0 � � 0 0 0 1 0 0 0
0 � � 0 0 0 � 1 0 0

0 � 1 0 0 0 0 0 0
0 � 1 0 0 0 0 0

0 � 1 0 0 0 0
0 � � � 1 0

0 � � � 1
0 0 0 0

0 0 0
0 0

0



.

Iλ1

Here the positions with ones give supp(λ1). Viewing h2 = F2-span{eij | (i, j) ∈ Iλ1}, let
λ2 ∈ h2 be the linear functional represented by the matrix λ2 = e3,5 +e4,6 +e8,10 +e9,11, and
let λ3 = 0 ∈ h3 and λ4 = 0 ∈ h4. These choices of λi uniquely determine the vector spaces
hi, ii and groups Li,Ri, and the following table lists the relevant properties of the resulting
decomposition sequence S:

i |hi| |Li| |LStabS(λi)| |Li � λi| |ii| Number of two-sided orbits in |hi|
0 278 278 1 278 278 1
1 278 278 251 227 215 27644437
2 215 266 259 27 25 58
3 25 264 261 23 2 1
4 2 262 261 2 2 1

Figure 2: Properties of the degenerate decomposition sequence S

The last line of this table shows that S is degenerate since |i3| = |i4| = 2 > 1, and
so χS is a reducible character which we cannot decompose by our generic constructions. In
particular we see that 〈χS , χS〉 = |i4| = 2, and so χS has exactly two irreducible constituents.
To construct these characters, we observe the following. First, by direction computation we
find that L4 is given by the subgroup H in the theorem statement, and that the stabilizer
subgroup LStabS(λ4) is the set of elements in H with b = 0 in the notation used above. Since
LStabS(λ4) is a subgroup of L4 of index two, the quotient group QL4 = L4/LStabS(λ4) ∼=
Z2 has one non-identity element. Let g ∈ L4 be a representative of this nontrivial coset,
and note that g2 ∈ LStabS(λ4). For example, we can take g to be the matrix g = 1 +
e3,4 + e5,6 + e6,7. There are two elements of the vector space h4

∼= F2; we denote these
functionals by 0 and γ. Now let v0, v1 ∈ CG be the vectors v0 = vS(0) = vS(λ4) and
v1 = vS(γ) = vS(g� 0). One can check by direct computation that αS(g,0) 6= αS(g, γ), but
this also follows abstractly from fact that if αS(g,0) = αS(g, γ) then

C-span
{

1
2

(v0 ± v1)
}

= C-span

{
1
|i4|

∑
X∈i4

θ(Γ(X))vS(λ4 +X)

}
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would be an L4-invariant subspace of WS = CL4vS(λ4) for either of the two nontrivial
F2-linear functionals Γ : i4 → F2. Since VS is induced from WS , it follows that we could
decompose VS by extending the sequence S, which contradicts Corollary 8.1.

Given this fact, the vector spaces

U1 = C-span{v0 + iv1} and U2 = C-span{v0 − iv1}

must be L4-submodules of WS . In particular, we have

g(v0 ± iv1) = αS(g,0)v1 ± iαS(g, γ)v0 = αS(g,0)(v1 ∓ iv0) = ∓iαS(g,0)(v0 ± iv1).

A symmetric argument shows U1 and U2 are also right R4-invariant. Since clearly WS =
U1⊕U2, it follows that VS decomposes as a direct sum of induced modules VS = IndG

L4
(U1)⊕

IndG
L4

(U2).
Let τ, τ be the characters of U1, U2. These characters are linear and given explicitly by

τ(x) = ±iαS(x, λ4) for x /∈ LStabS(λ4) and τ(x) = αS(x, λ4) for x ∈ LStabS(λ4). Now let
χ = τG. To show that χ takes non-real values, we evaluate τG on the following element of
L4 = H ⊆ G:

g =



1 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0
1 0 0 0 1 1 0 1 0 0

1 1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0

1 1 0 1 0 0 0
1 1 0 0 0 0

1 0 0 0 1
1 1 0 0

1 1 0
1 1

1



.

The nonzero positions of g above the diagonal are (1, 2), (2, 3), (2, 5), (2, 6), (3, 4), (4, 8),
(4, 9), (4, 11), (5, 6), (6, 7), (7, 8), (7, 10), (8, 9), (9, 13), (10, 11), (11, 12), (12, 13). One can
check using a computer algebra system that the linear equation xg = g−1x has no solution
x ∈ G, and so g is not conjugate to its inverse. More directly, one can construct g by
conjugating the element given in [10]. Of course we could just use the latter element; we
exhibit g to show that H contains an element which is not conjugate to its inverse in G.

We evaluate χ(g) by the formula

χ(g) =
∑
x∈Ĝ

τ̇(xgx−1), τ̇(h) =
{
τ(h), h ∈ H
0, h /∈ H

where Ĝ denotes a set of representatives of the cosets G/H. We can take Ĝ to be the set

Ĝ =





1 • • • • • • • • • • • •
1 • • 0 • • • • • • • •

1 • 0 0 0 • • • • • •
1 0 0 0 0 • 0 • • •

1 0 • • • • • • •
1 0 • • • • • •

1 • • • • • •
1 • 0 0 • •

1 0 0 0 •
1 • • •

1 • •
1 •

1



| • ∈ F2



.
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Using a computer, one can check directly gh−1 /∈ H for g, h ∈ Ĝ with g 6= h. Since Ĝ has
only 216 elements, computing the value of the induced character is quite manageable. The
algorithm we implemented yields a value of χ(g) = ±256

√
−1, where the sign depends on an

arbitrary assignment of τ to U1 or U2. Thus χ, χ are the complex irreducible characters of
U13(F2); they are induced from linear characters of H = L4; and their degrees are |G||H| = 216.
By the results in [11], this proves that all real-valued characters of U13(F2) are given by real
representations. Finally, (3) in the theorem follows from a separate computation using the
code written to calculate the table in Figure 1.

10 Acknowledgments

I would like to thank Persi Diaconis and Nat Thiem for their help and guidance during the
course of my undergraduate research. I very much appreciate the direction and support they
provided as advisors during my junior and senior years of study.

References
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