
MATH 2121 (Fall 2017) Practice Final

Note: As with the practice midterm, the following list of problems is longer than what will
appear on the actual final. Some problems may also turn out to be more difficult than the
problems you’ll see on the exam. On average, however, these problems should be fairly similar
in difficulty to the exam problems, and they cover most of the material that you should review.

These exercises focus more on the second half of the course.

For problems related to the first half, see the practice midterm.

1. Give the definitions of (a) vector space, (b) subspace of a vector space, and (c) linear
transformation between vector spaces

Solution. See the textbook and the lecture notes.

2. Let V be the set of polynomials f(x) in one variable of degree at most 3.

This means that x3 + x ∈ V and x2 − 4 ∈ V but x4 /∈ V .

Let D be the subset of polynomials f(x) ∈ V with f(0) = 0.

Let E be the subset of polynomials f(x) ∈ V with f(1) = 0.

(a) Explain when V is a vector space.

(b) Give a basis for V . What is dimV ?

(c) Explain why D and E are subspaces of V .

(d) Give a basis for D. What is dimD?

(e) Find an invertible linear function T : D → E.

(f) Use the previous two parts to find a basis for E. What is dimE?

Solution. (a) Addition and scalar multiplication satisfy the axioms of a vector space.

(b) A basis for V is 1, x, x2, x3, and dimV = 4.

(c) If f(c) = g(c) = 0 then (f + g)(c) = 0 and λf(c) = 0 for all λ ∈ R.

Taking c = 0 and c = 1 shows that D and E are subspaces.

(d) A basis for D is x, x2, x3, and dimD = 3.

(e) The function T : D → E given by T (f(x)) = f(x− 1) is linear and invertible.

(f) A basis for E is x− 1 = T (x), (x− 1)2 = T (x2), (x− 1)3 = T (x3), and dimE = 3.

3. Give the definitions of (a) eigenvector, (b) eigenvalue, and (c) diagonalisable.

Solution. See the textbook and the lecture notes.
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4. Consider the matrix

A =

 −2 −4 2
−2 1 2

4 2 5

 .
(a) Find the eigenvalues of A. Do this without using a calculator.

(b) Find a basis for each eigenspace of A.

(c) Is A diagonalisable? If it is, find an invertible matrix P and a diagonal matrix D
such that A = PDP−1. Then find an exact formula for An for any n.

Solution. (a) The eigenvalues of A are 6, −5, and 3.

(b) Each eigenspace is 1-dimensional (since eigenvectors from distinct eigenvalues are
linearly independent and we are working in R3).

A basis for the 6-eigenspace is

 1
6

16

.

A basis for the −5-eigenspace is

 −2
−1

1

.

A basis for the 3-eigenspace is

 −2
3
1

.

(c) A is diagonalisable since it is 3× 3 with 3 distinct eigenvalues.

For P and D we can take

P =

 1 −2 −2
6 −1 3

16 1 1

 and D =

 6 0 0
0 −5 0
0 0 3

 .

5. Consider the matrix

A =

 1 1 0
0 1 1
0 0 1

 .
(a) Is A invertible? Explain why or why not.

(b) Is A diagonalisable? Explain why or why not.

(c) Find an exact formula for An for any positive integer n.

Solution. (a) A is invertible since detA = 1 6= 0.

(b) A is not diagonalisable since its only eigenvalue is 1 but its 1-eigenspace is 1-dimensional.
Also, we proved in class that the only upper triangular matrix with all ones on the
diagonal which is diagonalisable is the identity matrix.
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(c) Although A is not diagonalisable, we can still guess a formula for An:

An =

 1 n n(n− 1)/2
0 1 n
0 0 1

 =

 1 n 1 + 2 + 3 + · · ·+ n− 1
0 1 n
0 0 1

 .
Multiplying this matrix by A gives the same formula with n replaced by n+ 1.

6. Find examples of the following:

(a) A matrix which is not invertible or diagonalisable.

(b) A matrix which is symmetric but not invertible.

(c) A matrix which is not diagonal or invertible, but is diagonalisable.

(d) A 3× 3 matrix which is diagonalisable but not diagonal, with only two eigenvalues.

(e) A 3× 3 matrix with all real entries and two complex eigenvalues which are not in R.

Solution. (a)

[
0 1
0 0

]
.

(b)

[
0 0
0 0

]
.

(c)

 0 1 0
1 0 0
0 0 0

.

(d)

 1 1 0
0 2 0
0 0 2

.

(e)

 0 −1 0
1 0 0
0 0 0

.

7. Find an invertible matrix P and a matrix C of the form

[
a −b
b a

]
such that

[
5 −5
1 1

]
= PCP−1.

Solution. The matrix A =

[
5 −5
1 1

]
has characteristic polynomial (5−x)(1−x)+5 = x2−6x+10

which, by the quadratic formula has roots 3 + i and 3− i. An eigenvector with eigenvalue
3− i is found by row reducing

A− (3− i)I =

[
2 + i −5

1 −2 + i

]
∼
[

1 −2 + i
2 + i −5

]
∼
[

1 −2 + i
0 0

]
.
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This indicates that v =

[
2− i

1

]
is an eigenvector with eigenvalue 3− i.

By the last theorem in Lecture 18, it then holds that A = PCP−1 for the matrices

P =

[
2 −1
1 0

]
and C =

[
3 −1
1 3

]
.

8. Find an exact formula for the nth term for the sequence an which begins as a0 = 0, a1 = 1,
a2 = 2, and satisfies an+3 = an + an+1 + an+2 for n ≥ 0.

Solution. This challenging problem is much more difficult than would be reasonable for an exam
question. However, in principle you could find a solution by a method similar to how we
computed an exact formula for the Fibonacci numbers in class.

The sequence an gives the Tribonacci numbers. An exact formula is discussed at http:

//mathworld.wolfram.com/TribonacciNumber.html, where Tn is defined as an−1.

9. Give definitions of u•v and ‖v‖ for vectors u, v ∈ Rn. What is a unit vector? Define what
it means for a set of vectors to be orthogonal and orthonormal.

Solution. See the textbook and the lecture notes.

10. Find an orthonormal basis for the column space of the matrix

A =

 1 2 4 5
0 3 5 8
1 −1 −3 −2

 .
Then find an orthonormal basis for (ColA)⊥.

Solution. Find, we find a basis for ColA by row reducing:

A ∼

 1 2 4 5
0 3 5 8
0 −3 −7 −7

 ∼
 1 2 4 5

0 3 5 8
0 0 −2 −1

 .
This reveal columns 1, 2, and 3 of A to be pivot columns. Hence

u =

 1
0
1

 , v =

 2
3
−1

 , w =

 4
5
−3


is a basis for ColA. We can replace w by 1

2(w − v). This vector

 1
1
−1

 is already

orthogonal to u. To convert v to a vector orthogonal to

 1
0
1

 and

 1
1
−1

, we compute

 2
3
−1

− 1

2

 1
0
1

− 6

3

 1
1
−1

 =

 2− 1/2− 2
3− 0− 2

−1− 1/2 + 2

 =

 −1/2
1

1/2

 .
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Thus the vectors

 1
0
1

 ,
 1

1
−1

 ,
 −1/2

1
1/2

 forms an orthogonal basis for ColA. To make

this basis orthonormal, we normalise to get:

1√
2

 1
0
1

 , 1√
3

 1
1
−1

 , 1√
6

 −1
2
1

 .
Since in this case ColA = R3, we have (ColA)⊥ = Nul(AT ) = {0}, so the empty set is an
orthonormal basis for (ColA)⊥.

11. Give a formula for the orthogonal projection of a vector y ∈ R3 onto the plane

H = {v ∈ R3 : v1 + 2v2 + 3v3 = 0}.

Solution. A basis for H is given by the vectors u =

 2
−1

0

 and v =

 0
3
−2

. These vectors are

not orthogonal, but if

w = v − u • v
u • u

u =

 0
3
−2

− −3

5

 2
−1

0

 =

 6/5
12/5
−2

 =
1

5

 6
12
−10


then u and w are an orthogonal basis for H. Let u1 = u and u2 = 5w. Then u1 and u2

are an even simpler orthogonal basis for H. The formula for projH(y) is then

projH(y) =
y • u1

5

 2
−1

0

+
y • u2

280

 6
12
−10

 .

12. Find the best approximation to z by vectors of the form c1v1 + c2v2 when

z =


2
4
0
−1

 , v1 =


2
0
−1
−3

 , and v2 =


5
−2

4
2

 .
Solution. The best approximation is found by finding a least-squares solution to Ac = z where

A =


2 5
0 −2
−1 4
−3 2

 and c =

[
c1

c2

]
.
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Our least-squares solution is found as the exact solution to ATAc = AT z. We have

ATA =

[
14 0
0 49

]
and AT z =

[
7
0

]
.

The system ATAc = AT z can be solved by row reducing:[
14 0 7
0 49 0

]
∼
[

1 0 1/2
0 1 0

]

which indicates that there is a unique least-squares solution c =

[
1/2

0

]
. Therefore

1

2
v1 + 0v2 =


1/2

0
−1/2
−3/2


is the best approximation to z of the desired form.

13. Suppose a function f : R→ R has the following values:

x f(x)

0 0
1 6
2 5
3 10
4 7

(a) Find the equation of the line y = ax+ b that best approximates f(x) is the sense of
least-squares.

(b) Find the equation of the parabola y = ax2 + bx + c that best approximates f(x) is
the sense of least-squares.

(c) How would you find a function of the form g(x) = 2ax+b that is a good approximation
for f(x)?

Solution. (a) If y = ax+ b is a line of best fit then

[
a
b

]
is a least-squares solution to Ax = B for

A =


0 1
1 1
2 1
3 1
4 1

 and B =


0
6
5

10
7

 .

The least-squares solutions to Ax = B are the exact solutions to ATAx = ATB, which
can be written as [

30 10
10 5

] [
a
b

]
=

[
74
28

]
.
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Row reducing the augmented matrix of this system gives[
30 10 74
10 5 28

]
∼
[

10 5 28
30 10 74

]
∼
[

10 5 28
0 −5 −10

]
∼
[

1 .5 2.8
0 1 2

]
∼
[

1 0 1.8
0 1 2

]
.

Thus the line of best fix is y = 1.8x+ 2 .

(b) To find a, b, c we compute the least-squares solution to Ax = B for

A =


0 0 1
1 1 1
4 2 1
9 3 1

16 4 1

 and B =


0
6
5

10
7

 .

To find a least-squares solution, we find an exact solution to ATAx = ATB, whose aug-
mented matrix is  354 100 39 228

100 30 10 74
30 10 5 28

 .
By the usual methods of row reduction, you can compute that the unique exact solution
to ATAx = AT b is  a

b
c

 =

 −6/7
183/35

2/7


so the best fix parabola is y = (−6/7)x2 + (183/35)x+ 2/7.

(c) To find a function of the desired form, you could solve the least-squares problem
1 1
2 1
3 1
4 1

[ ab
]

=


log2 6
log2 5

log2 10
log2 7

 .
In this computation, we ignore the first data point (x, f(x)) = (0, 0) since log2 x is unde-
fined when x = 0.

14. Consider the symmetric matrix

A =

 1 2 3
2 4 5
3 5 6

 .
Find an orthogonal matrix U (that is, an invertible matrix with UT = U−1) and a diagonal
matrix D such that

A = UDUT .

Repeat this exercise with 1, 2, 3, 4, 5, 6 replaced by a random list of six numbers.
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Solution. For an arbitrarily chosen symmetric matrix, it may be difficult to compute an orthogonal
diagonalisation without a calculator — this turns out to be the case here, which makes
this not a very good practice problem :/

Such problems won’t appear on the exam.

The important thing is to review the general produce for constructing an orthogonal di-
agonalisation:

1. First find the characteristic polynomial of A.

2. Factor this polynomial to compute the eigenvalues λ of the matrix.

3. For each eigenvalue λ, find a basis for Nul(A− λI).

4. Apply the Gram-Schmidt process to turn this basis into an orthogonal basis.

5. Distinct eigenspaces of a symmetric matrix are automatically orthogonal, so you just
need to put the bases found in the last step together and then normalise so that your have
an orthonormal basis v1, v2, . . . , vn for Rn.

6. The matrices U and D are then

U =
[
v1 v2 v3

]
and D =

 λ1 0 0
0 λ2 0
0 0 λ3

 .

15. Find a singular value decomposition for the matrix

A =


0 1 0 0 0
2 0 0 0 0
0 0 0 0 −1
0 0 0 3 0


Solution. A matrix A may have many different singular value decompositions A = UΣV T . In each

SVD, the middle term Σ is uniquely determined by A, but U and V may vary. For the
current problem, one possible singular value decomposition is

A =


0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0


︸ ︷︷ ︸

=U


3 0 0 0 0
0 2 0 0 0
0 0 1 0 0
0 0 0 1 0


︸ ︷︷ ︸

=Σ


0 0 0 1 0
1 0 0 0 0
0 0 0 0 −1
0 1 0 0 0
0 0 1 0 0


︸ ︷︷ ︸

=V T

.

The diagonal entries of Σ are the singular values of A which are the squares roots of the
eigenvalues of ATA.

The columns v1, v2, . . . , v5 of V (the transposes of the rows of V T ) are an orthonormal
basis of eigenvectors for ATA.

The columns of U are the normalised vectors obtained from Av1, Av2, . . . , Avr, where r = 4
is the rank of A.
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For example, since v2 =


1
0
0
0
0

 and Av2 =


0
2
0
0

, the second column of U is


0
1
0
0

.

16. Do the first problem in each section of supplementary exercises for Chapters 1-7.

Solution. Answers are in the back of the textbook.
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