MATH 2121 — Linear algebra (Fall 2017) Lecture 5

1 Last time: multiplying vectors matrices

aiq ai12 e A1n U1
. . a1 a922 e agn U2
Given a matrix A = . . . | and a vector v = . | € R™ we define
am1 Am2 e Amn Un
a11 a12 A1n
a21 a22 a2n
szvl . + Vo . + -4,
am1 Am?2 Amn

We refer to Av as the product of A and v, or the vector given by multiplying v by A.

—1
12 3 [ -1+40+43] _[2
Example. VVehawe{5 6 7] (1) {_54_0_'_7}[2].

Multiplying v € R™ by an m X n matrix A transforms v to a new vector Av € R™.
This transformation is linear in the sense that:

1. A(lu+v) = Au+ Av if u,v € R™

2. A(ew) = c(Av) if v € R™ and ¢ € R.

1o
T2

If Ais an m x n matrix and x = . | and b € R™, then we call a matrix equation.
In

A matrix equation Az = b has the same solutions as the linear system with augmented matrix [ A b ]

Theorem. Let A be an m x n matrix. The following are equivalent:
1. Ax = b has a solution for any b € R™.
2. The span of the columns of A is all of R™.

3. A has a pivot position in every row.

Example. The matrix equation

1 3 4 T1 by
—4 2 —6 T2 | = | b
-3 -2 -7 XT3 b3
may fail to have a solution since
1 3 4 1 0 =
RREF —4 2 —6 =10 1 =«
-3 -2 -7 0 0 O

has pivot positions only in rows 2 and 3.
A homogeneous linear system is one that can be written Az = 0.
Such a system has one trivial solution given by x = 0.

A homogeneous linear system has a nontrivial solution if and only if it has at least one free variable.
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A homogeneous linear system has a free variable if not every column is a pivot column in its coefficient
matriz (remember that this is the augmented matrix without the last column).

2 Linear independence

We briefly introduced the notion of linear independence last time.

Vectors vy, v2,...,v, € R" are linearly independent if the homogeneous matrix equation
T
T2
[ v w2 v | L |=0
Tp

has no nontrivial solution.

If civ1 + covg + - - - + cpvp = 0 where ¢y, ¢2,..., ¢, € R and some ¢; # 0, then we refer to “civ1 + covy +
-4 cpvp =07 as a linear dependence among the vectors vy, v, ..., vp.

Vectors are linearly independent if there is no linear dependence among them.

Vectors which are not linearly independent are linearly dependent.

1
Example. The vectors 0], 3 |,and [ 9 | are linear dependent since
-1
1 2 5 0
— 0 [+3| 3 |- 9(=1|0]=0.
-1 5 16 0
But ] [ are linearly independent, since
1 2 5 1 2 5 1 2 5 1 00
A= 03 9((~|03 9|~1]01 3| ~|0 1 0 |=RREF(A)
-1 5 15 0 7 20 00 -1 0 0 1

where ~ denotes row equivalence. Every column of A contains a pivot position, so the linear system with
coefficient matrix A has no free variables, so Az = 0 have no nontrivial solutions, meaning the columns
of A are linearly independent.

Some useful facts about linear independence.

1. A single v is linearly independent if and only if v # 0.

A list of vectors is linearly dependent if it includes the 0 vector.

2. Vectors vy, vg,...,v, € R" are linearly dependent if and only if some vector v; is a linear combination
of the other vectors vq,...,vi—1,Viq1,...,Vp.
5 2 1
We saw this in the previous example: 91 =33 |- 0
16 5 -1

The last thing we’ll note about linear independence (for now) is this useful, non-obvious fact:

Theorem. Assume p > n and vy, v2,...,v, € R”. Then these vectors are linearly dependent.
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Proof. Let A = [ Vi V2 ... U }

This matrix has more columns than rows.

Each row contains at most one pivot position, so there are fewer pivot positions than columns.
Therefore some column is not a pivot column.

This means the linear system Az = 0 has a free variable, so has a nontrivial solution.

This implies that vi, v, ..., vp, the columns of A, are linearly dependent. O

Example. Suppose v; = [ ; ] and vy = [ :1% ] and vg = { 68 } Then

A=y s e 0]~lot s o]0 o=
Column 3 of A contains no pivot position, so x3 is a free variable in the vector equation x1v; +xove +x303.
Therefore vy, vo, v3 are linearly dependent.
In fact we have xyv1 + z2vs + x3v3 = 0 if and only if x7 — 4523 = x5 + 5023 = 0.

Take 3 = 1. Then x1 = 45 and x5 = —50, so 45v; — 5009 + v3 = 0.

3 Linear transformations

A function f (like the ones we see in calculus) takes an input x from some set X (for example, R) and
produces an output f(z) in another set Y’

We write f: X — Y to mean that f is a function that takes inputs from X and gives outputs in Y.
X is called the domain of the function f.

Y is sometimes called the codomain of f.

Remark. For every x in the domain X of f, we get an output f(z).

It possible that some values y in the codomain Y may never occur as outputs of f, however.

The image of an input = in X under f is the ouput f(x).

Define the image or range of the function f to be the subset {f(x) : © € X} of the codomain Y. This is
the set of all possible outputs of f. We denote the range of f by range(f).

Example. An m x n matrix A is a function A : R® — R™. Given an input vector v € R"™, the
corresponding output is Av € R™.

Consider a function f : R™ — R™ whose domain and codomain are the sets of all vectors in dimensions
m and n. The function f is a linear transformation or linear function if both of these properties hold:

(i) flu+v) = f(u)+ f(v) for all vectors u,v € R™.
(ii) f(ew) = cf(v) for all vectors v € R™ and scalars ¢ € R.

Linear transformations have the following additional properties:

Proposition. If f: R™ — R™ is a linear transformation then
(iii) f(0) =0.
(iv) f(u—v) = f(u) — f(v) for u,v € R™.
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(v) flau+bv) =af(u)+bf(v) for all a,b € R and u,v € R™.

Proof. (ili) We have f(0) = f(0+0) =2£(0) so f(0) =0.
(iv) We have f(u—wv) = f(u) + f(=v) = f(u) + (=1)f(v) = f(u) = f(v).
(v) We have f(au + bv) = f(au) + f(bv) = af(u) + bf(v). O

Example. We have already seen that an m X n matrix A defines a linear transformation R™ — R™.

1 -3
Suppose A = 3 5 | and T : R? — R3 is the function defined by T'(v) = Av.
-1 7

(a) The image of a vector v € R? under T is by definition T'(v) = Av.
. 2 : 2 L3 2 >
The image of v = under T is T = 3 5 = 1
-1 -1 -1 7 - -9

(b) Is the range of T all of R3? If it was, then (from results last time) A would have to have a pivot
position in every row. This is impossible since each column can only contain one pivot position,
but A has three rows and only two columns. Therefore range(7') # R3.

Example. Fix 6 € [0,27). The notation [a,b) means “the set of numbers z € R with a < z < b.” Define

| cosf® —sind
~ | sin6 cos 6

and let T : R? — R? be the linear transformation T'(v) = Av.
How does T'(v) compare to v, in terms of geometric representations of vectors in R??

cos

1. Ifv= L is a vector parallel to the z-axis, then T'(v) = Av = | .
0 sin 0

] . Draw a picture of this:

In words: T(v) is the arrow from the origin to the point on the unit circle which is angle 6
counterclockwise from (z,y) = (1, 0).
) ]
)

2. Ifv = [ (1) ] is a vector parallel to the y-axis, then T'(v) = Av = [

Draw a picture of this:

—sinf | | cos(f+
cosf | | sin(0+

NEINE]

In words: T'(v) is the arrow from 0 to the point on the unit circle which is angle § + 7 counter-
clockwise from (z,y) = (1,0), which is the point angle 6 counterclockwise from (z,y) = (0,1).
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It appears from these examples that T'(v) is the vector given by rotating v counterclockwise by angle 6.

How do we know this is true for any v € R?? Use linearity and the fact that the sum of two vectors u
and v in R? corresponds to the arrow from the origin to the opposite vertex of the parallelogram with
sides v and v.

U1
0

U1

Any vector v = [ v } can be written v = [ ] + [ UO ] , S0 is the arrow to the opposite vertex in the
2 2

parallelogram with sides [ U1 ] and [ UO } Since
2

o) =7( " ])+7 (] .))

and since T rotates by angle 6 the two vectors on the right, it follows that T'(v) is the arrow from 0 to the
opposite vertex in our previous parallelogram, now rotated counterclockwise by angle . Draw a picture
to convince yourself:

Theorem. Suppose T : R" — R™ is a linear transformation. Then there is a unique m x n matrix A
such that T'(v) = Av for all v € R™.

Moral: Matrices uniquely represent all linear transformations R™ — R™.

Proof. Define ey, e3,...,e, € R™ as the vectors
1 0 0 0
e = 0 , ey = 0 s ey Ep1 = 0 , and e, = 0
: ; 1 0
0 0 0 1

so that e; has a 1 in the ith row and 0 in all other rows.

Define a; = T'(e;) € R™ and A = [ a, ay az ... ap ]
w1
w2

If w is any vector w = . | € R™ then
wy,

T(w) = T(wier + waeg + -+ - + wpey)
=wiT(e1) + woT(e2) + - - + w,T(en) = wiay +woas + - -+ + wpa, = Aw.
Thus A is one matrix such that T'(v) = Av for all vectors v € R™.
To show that A is the only such matrix, suppose B is a m X n matrix with T(v) = Bv for all v € R™.

Then T'(e;) = Ae; = Be; for all i =1,2,...,n.
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But Ae; and Be; are the ith columns of A and B. For example,

0
12347 [1 23470 [3
56 7 8% 56 78|17 |7
0
Therefore A and B have the same columns, so they are the same matrix: A = B. O

We call the matrix A in this theorem the standard matriz of the linear transformation 7.

Example. Suppose T : R” — R" is the function T'(v) = 3wv.
This is a linear transformation. (Why?) What is the standard matrix A of 77

As we saw in the proof of the theorem, the standard matrix of T : R™ — R" is

30 ... 0
03 --- 0
A=[T(e1) T(e2) ... Tlen) | =[3e1r 3es ... 3e, |= S
00 --- 3
In words, A is the matrix with 3 in each position (1,1),(2,2),...,(n,n) and 0 in all other positions.
One calls such a matrix diagonal.
Example. Suppose T : R® — R"™ is the function
U1 U1
b2 2 2, .2 2
T . :[vl Vg ... vn] L =i+ 4
Un Un,

This function is not linear: we have T'(2v) = 4T (v) # 2T (v) for any nonzero vector v € R™.

Example. Suppose T : R® — R"™ is the function

U1 Un

(%) :

T =1
. V2

Un, U1

A:[T(el) T(ea) ... T(en—1) T(en)]: [ €n €n_1 ... €9 e ]:

In the matrix on the right, we adopt the convention of only writing the nonzero entries: all positions in
the matrix which are blank contain zero entries.

Definition. A function f : X — Y is one-to-one or injective if f(a) = f(b) implies ¢ = b. In words: f
does not send two different inputs to the same output.
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Theorem. If T': R" — R™ is linear then 7T is one-to-one if and only if the only solution to T'(x) = 0 is
x =0 € R", ie., the columns of the standard matrix A of T" are linearly independent.

Proof. If T is not one-to-one, then there are vectors u,v € R"™ with u # v and T'(u) = T'(v).

In this case u — v # 0 and T (v —v) = T(u) — T'(v) = 0 so T'(x) = 0 has a nontrivial solution.

If T is one-to-one, then T'(z) = T(0) = 0 implies = 0, so T'(x) = 0 has only trivial solutions. O

Definition. A function f : X — Y is onto or surjective if range(f) = {f(z) : z € X} =Y. In words:
the range of f is equal to its codomain.

Theorem. If T': R™ — R™ is linear then T is onto if and only if the columns of the standard matrix A
of T span R™.

Proof. The vectors in the range of T are precisely the linear combinations of the columns of A.

The range is R™ precisely when the span of the columns of A is R™. O
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