MATH 2121 — Linear algebra (Fall 2017) Lecture 9

1 Last time: inverses

The transpose of an m x n matrix A is the n x m matrix AT whose rows are the columns of A.

T a d

a b c
For example, { d e f] =|b e
c f

If Aism xn and B is n X k, then AB is defined and (AB)T = BT AT.

The following all mean the same thing for a function f: X — Y-
1. f is invertible.
2. f is one-to-one and onto.
3. For each b € Y there is exactly one a € X with f(a) = 0.
4

. There is a unique function f~!:Y — X, called the inverse of f, such that

Y f@)=a and  f(f7YD) =b forallae X andbeY.

Proposition. If T : R® — R™ is linear and invertible then m = n and T~ is invertible.

The following all mean the same thing for an n x n matrix A:
1. A is invertible.
2. A is the standard matrix of an invertible linear function 7" : R™ — R™.

3. There is a unique n x n matrix A=, called the inverse of A, such that

1

ATTA=AAT =1, =

4. For each b € R™ the equation Az = b has a unique solution.
5. RREF(A) = I,

6. The columns of A span R™ and are linearly independent.

< | a
Proposition. Let A = [ e d

(1) A is invertible if and only if ad — bc # 0.

b } be an arbitrary 2 x 2 matrix.

- d —b
(2) fad —be# 0 then A~' = Lo { e a }

Foealel2_1* -2 1] [ 4 -2
pexampie s g T 32 —1/2 | T2 =3 1|

Proposition. Let A and B be n X n matrices.
1. If A is invertible then (A=1)~! = A.
2. If A and B are both invertible then AB is invertible with (AB)~! = B=1A~1
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3. If A is invertible then AT is invertible with (AT)~! = (A=1)T.

Process to compute A1

Let A be an n x n matrix. Consider the n x 2n matrix [ A I, }
If A is invertible then RREF ([ A I, ]) = [ I, A1 ]

So to compute A~1, row reduce [ A I, } to reduced echelon form, and then take the last n columns.

oo W

Examole. | 1 1o] [t 3 10] [13 1 0] [1 0 =87 3/7
P15 8 01 0 -7 =5 1 0 1 5/7 —1/7 01 5/7 —1)7

[Sa 0

-1
1 _
Therefore [ } =— { 8 il)) } , which agrees with our formula in the 2 x 2 case.

2 Stronger characterization of invertible matrices

Remember that a matrix can only be invertible if it has the same number of rows and columns.

Theorem. When A is a square matrix, the following are equivalent:
(a) A is invertible.
(b) The columns of A are linearly independent.

(¢) The columns of A span R”

We said earlier that a matrix is invertible if and only if its columns both are linearly independent and
span R™. This is still true, but it turns out that if we know ahead of time that A is a square matrix, then
either condition (b) or (c) implies the other.

Proof. We already know that (a) implies both (b) and (c).

Assume just (b) holds. Then A has a pivot position in every column, so RREF(A) = I,, since A has the
same number of rows and columns. But this implies that A is invertible.

Similarly, if (c) holds then A has a pivot position in every row, so RREF(A) = I,, and A is invertible. O

Corollary. Suppose A and B are n X n matrices. If AB = I, then BA = I,,.
This means that if we want to show that B = A~! then it is enough to just check that AB = I,,.

Proof. Assume AB = I,,. Then the columns of A span R" since if v € R™ then Au = v for u = Bv € R",
so A is invertible. Therefore B = A"1AB = A"1], = A 1 so BA=A"1A=1,. O

Aside (optional reading). The corollary is equivalent to saying that if T, U : R™ — R™ are linear and
T o U = idg~ is the identity function, then U o T = idg~. Curiously, this fails in “infinite dimensions.”

U1

V2

Define R* as the set of “infinite” column vectors v = where v1,vo,... are real numbers but

only finitely many are nonzero. Every element v € R* is formed by taking an ordinary vector in R™
for some n and then adding on infinitely many extra rows of zeros. If an infinite column vector seems
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strange, another way to view elements of R™ is as functions v : {1,2,3,...} — R with the property that
the number of positive integers ¢ with v(¢) # 0 is finite.

Sums and scalar multiples of vectors in R* are defined as coordinate-wise operations exactly as for
vectors in R™, and so we can define linear transformations R — R by the same pair of conditions as
we use to define linear transformations R™ — R™. (Can you write down the details?)

Now consider the functions T, U : R® — R given by the shift operators

U1 0 U1 Vo
V2 U1 V2 U3
U v3 =1 vy and T v =1

In words, U shifts a vector down by adding a zero row at the top, while T shifts a vector up by forgetting
the first row. Both of these functions are linear transformations. (Check this!)

We have T o U = idgr~ since

(% 0 (%
V2 (%1 V2
TIU v3 =T Vo =1 v
However, U o T' # idr~ since
V1 (%] 0
V2 U3 V2
4 U3

Linear algebra is the study of the linear transformations R™ — R™ where n and m are finite numbers.
The study of linear transformations R* — R is functional analysis (MATH 4063).

3 Subspaces of R"

Returning to our usual convention, let n be a positive integer (not o).

0

0
Recall that 0 € R™ denotes the zero vector 0 =

0
Subsets of R™ that are closed under scalar multiplication and addition are called subspaces. To be precise:

Definition. Let H be a subset of R™. The subset H is a subspace if these three conditions hold:
1.0e H.
2. u+ve Hifu,ve H.
3.ecveHifceRandv e H.

Common examples

R™ is a subspace of itself.
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The set {0} consisting of just the zero vector is a subspace of R™.

The empty set @ is not a subspace since it does not contain 0.

A subset H C R? is a subspace if and only if H = {0} or H = R? or H is a line through 0.
The span of any set of vectors in R" is a subspace.

(Later, we will see that every subspace is the span of some set of vectors.)

U1
Example. The set X of vectors v = | vo | € R® with v; + vy +v3 = 1 is not a subspace since 0 ¢ X.
U3

U1
The set H of vectors v = | vy | € R? with v; + v2 +v3 = 0 is a subspace since if u,v € H and ¢ € R
U3
then
(ur +v1) + (u2 + v2) + (uz +v3) = (ug +ug +u3) + (v1 +v2+v3) =04+0=0

and
cvy + cvg +cvg = c(v1 +va +v3) =0

sou+v€ H and cv € H.

Any matrix A gives rise to two subspaces, called the column space and null space.

Definition. The column space of an m X n matrix A is the subspace
ColA C R™

given by the span of the columns of A.

Remark. If T : R™ — R™ is the linear function T'(z) = Az then Col A = range(T).
Note that Col A = R™ if and only if Ax = b has a solution for each b € R™.
A vector b € R™ belongs to Col A if and and only if Az = b has a solution.

Definition. The null space of an m x n matrix A is the subspace
NulA C R"

given by the set of vectors v € R"™ with Av = 0.

Proof that Nul A is a subspace. If u,v € NulA and ¢ € R then A(u +v) = Au+ Av = 0+ 0 = 0 and
A(cv) = ¢(Av) =0, s0 u+v € Nul A and cv € Nul A. Thus Nul A4 is a subspace of R™. O

Remark. If T: R — R™ is the linear function T'(z) = Az then Nul A = {& € R™ : T'(x) = 0}. This is
usually called the kernel of T

Note: the column space is a subspace of R where m is the number of rows of A, while the null space
is a subspace of R™ where n is the number of columns of A.

At first, subspaces seem like big, complicated objects. But it turns out that each subspace is completely
determined by a finite amount of data. This data will be called a basis. Let H be a subspace of R".
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Definition. A basis for H is a set of vectors {vy,va,...,vx} C H which are linearly independent and
have span equal to H.

The empty set @ is considered to be a basis for the zero vector space {0}.

1 0
0 1

Example. The vectors {e1,ea,...,e,} C R™ where e; = 0 , g = 0 , etc., is a basis for R".
0 0

We call this the standard basis of R™.
Theorem. Every subspace H of R™ has a basis of size at most n.

Proof. It H = {0} then @ is a basis.

Assume H # {0}. Let B be a set of linearly independent vectors in H that is as large as possible. The
size of B must be at most n since any n + 1 vectors in R™ are linearly dependent by a result proved in an
earlier lecture.

Let wy,ws, ..., w, be the elements of B. Since B is as large as possible, if v € H is any vector then
w1, Wa, ..., Wk, v are linearly dependent so we can write civ1 + cove + -+ + cxvr + cv = 0 for some
numbers ¢y, cg, . .., cx, ¢ € R which are not all zero. Since the vectors in B are linearly independent, we
must have ¢ # 0 (why?) so it follows that

v= 2w + 2wy + -+ Lwy.
Thus, not only is B a set of linearly independent vectors, but these vectors also span H, so B is a basis. [
-3 6 -1 1 -1

Example. Let A = 1 -2 2 3 -1
2 -4 5 8 —4

How can we find a basis for Nul A? Well, finding a basis for Nul A is more or less the same task as finding
all solutions to the homogeneous equation Ax = 0. So let’s first try to solve that equation.

If we row reduce the 3 x 6 matrix [ A 0 |, we get

1 -2 0 -1 30
[A 0]~]|0 01 2 —2 0 |=RREF([A4 0 ]).
6 00 0 00O

x1—2x2—x4+3x520

This tells us that Az = 0 if and only if
x3 + 2x4 — 225 = 0.

Therefore x € Nul A if and only if

X1 2x9 + x4 — 375 2 1 -3
T2 T2 1 0 0
r=| x3 | = —2x442x5 | =22 | 0 | +24 | —2 | + 25 2
Ty Ty 0 1 0
T5 T5 0 0 1
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The vectors

2 1 -3
1 0 0
o, -21,] 2
0 1 0
0 0 1

are a basis for Nul A: we just computed that these vectors span the null space, and they are linearly
independent since each has a nonzero entry in a row (namely, either row 2, 4, or 5) whether the others
have zeros. (Why does this imply linear independence?)

This example is important: the procedure just described works to construct a basis of Nul A for any
matrix A. The size of this basis will always be equal to the number of free variables in the linear system
Az = 0. How to find a basis for Nul A is something you should remember at the end of this course.

10 -3 5 0
0 1 2 -1 0
Example. Let B = 0 0 0 0 1
00 0 00

This matrix is in reduced echelon form.

Finding a basis for Col B is in some ways easier than finding a basis for Nul B.

The columns of B automatically span Col B, but they might not be linearly independent.

The largest linearly independent subset of the columns of B will be a basis for Col B, however.

In our example, the pivot columns 1, 2 and 5 are linearly independent since each has a row with a 1
where the others have 0s. These columns span columns 3 and 4, so it follows that

oo o
SO = O
o= O O

is a basis for Col B.

This example was special since the matrix B was already in reduced echelon form. To find a basis of the
column space of an arbitrary matrix, we rely on the following observation:

Proposition. Let A be any matrix. The pivot columns of A form a basis for Col A.

Proof. This proof sketches the main ideas but doesn’t spell out all the details.

Suppose A is m x n. The reduced echelon form of A is obtained by multiplying A by an invertible matrix
E on the left, so we can write RREF(A) = EA.

0
where the 0 means an (m — k) x n submatrix of zeros. These columns are linearly independent since if

. . . 1
If a1,a9,...,a; are the pivot columns of A, then E[ ay as ... ag } is the m x k matrix { k }

[(ll as ... O,k]vzo

for v € R¥ then

which implies that v = 0.

Suppose w is a non-pivot column of A. The definition of reduced echelon form implies that the cor-
responding column Ew of RREF(A) = EA is in the span of Eay, Fag,...,Ea,. (Why?) If we have



MATH 2121 — Linear algebra (Fall 2017) Lecture 9

Ew = c1FEay + - - - + ¢, Eay, then multiplying both sides by E~! gives w = cya; + - - - + cpay 50 w is in the
span ap, as, . . .,a. Therefore the pivot columns of A span the other columns, and hence span Col A.

Since the pivot columns are linearly independent and have span equal to Col A, they form a basis. O

Example. The matrix
1 3 3 2 -9
-2 =2 2 -8 2
2 3 0 7 1
3 4 -1 11 -8

A:

is row equivalent to the matrix B in the previous example. The pivot columns of A are therefore also
columns 1, 2, and 5, so

1 3 -9
-2 -2 2
2 |’ 3|’ 1
3 4 -8

is a basis for Col A.

Next time: we will show that if H is a subspace of R™ then all of its bases have the same size. The
common size of these basis is the dimension of H.
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