
MATH 2121 — Linear algebra (Fall 2017) Lecture 9

1 Last time: inverses

The transpose of an m× n matrix A is the n×m matrix AT whose rows are the columns of A.

For example,

[
a b c
d e f

]T
=

 a d
b e
c f

.

If A is m× n and B is n× k, then AB is defined and (AB)T = BTAT .

The following all mean the same thing for a function f : X → Y :

1. f is invertible.

2. f is one-to-one and onto.

3. For each b ∈ Y there is exactly one a ∈ X with f(a) = b.

4. There is a unique function f−1 : Y → X, called the inverse of f , such that

f−1(f(a)) = a and f(f−1(b)) = b for all a ∈ X and b ∈ Y .

Proposition. If T : Rn → Rm is linear and invertible then m = n and T−1 is invertible.

The following all mean the same thing for an n× n matrix A:

1. A is invertible.

2. A is the standard matrix of an invertible linear function T : Rn → Rn.

3. There is a unique n× n matrix A−1, called the inverse of A, such that

A−1A = AA−1 = In =


1

1
. . .

1

 .

4. For each b ∈ Rn the equation Ax = b has a unique solution.

5. RREF(A) = In

6. The columns of A span Rn and are linearly independent.

Proposition. Let A =

[
a b
c d

]
be an arbitrary 2× 2 matrix.

(1) A is invertible if and only if ad− bc 6= 0.

(2) If ad− bc 6= 0 then A−1 = 1
ad−bc

[
d −b
−c a

]
.

For example,

[
1 2
3 4

]−1
=

[
−2 1
3/2 −1/2

]
= 1
−2

[
4 −2
−3 1

]
.

Proposition. Let A and B be n× n matrices.

1. If A is invertible then (A−1)−1 = A.

2. If A and B are both invertible then AB is invertible with (AB)−1 = B−1A−1.
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3. If A is invertible then AT is invertible with (AT )−1 = (A−1)T .

Process to compute A−1

Let A be an n× n matrix. Consider the n× 2n matrix
[
A In

]
.

If A is invertible then RREF
([

A In
])

=
[
In A−1

]
.

So to compute A−1, row reduce
[
A In

]
to reduced echelon form, and then take the last n columns.

Example.

[
1 3 1 0
5 8 0 1

]
∼
[

1 3 1 0
0 −7 −5 1

]
∼
[

1 3 1 0
0 1 5/7 −1/7

]
∼
[

1 0 −8/7 3/7
0 1 5/7 −1/7

]
.

Therefore

[
1 3
5 8

]−1
=

1

−7

[
8 −3
−5 1

]
, which agrees with our formula in the 2× 2 case.

2 Stronger characterization of invertible matrices

Remember that a matrix can only be invertible if it has the same number of rows and columns.

Theorem. When A is a square matrix, the following are equivalent:

(a) A is invertible.

(b) The columns of A are linearly independent.

(c) The columns of A span Rn

We said earlier that a matrix is invertible if and only if its columns both are linearly independent and
span Rn. This is still true, but it turns out that if we know ahead of time that A is a square matrix, then
either condition (b) or (c) implies the other.

Proof. We already know that (a) implies both (b) and (c).

Assume just (b) holds. Then A has a pivot position in every column, so RREF(A) = In since A has the
same number of rows and columns. But this implies that A is invertible.

Similarly, if (c) holds then A has a pivot position in every row, so RREF(A) = In and A is invertible.

Corollary. Suppose A and B are n× n matrices. If AB = In then BA = In.

This means that if we want to show that B = A−1 then it is enough to just check that AB = In.

Proof. Assume AB = In. Then the columns of A span Rn since if v ∈ Rn then Au = v for u = Bv ∈ Rn,
so A is invertible. Therefore B = A−1AB = A−1In = A−1 so BA = A−1A = In.

Aside (optional reading). The corollary is equivalent to saying that if T,U : Rn → Rn are linear and
T ◦ U = idRn is the identity function, then U ◦ T = idRn . Curiously, this fails in “infinite dimensions.”

Define R∞ as the set of “infinite” column vectors v =

 v1
v2
...

 where v1, v2, . . . are real numbers but

only finitely many are nonzero. Every element v ∈ R∞ is formed by taking an ordinary vector in Rn

for some n and then adding on infinitely many extra rows of zeros. If an infinite column vector seems
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strange, another way to view elements of Rn is as functions v : {1, 2, 3, . . . } → R with the property that
the number of positive integers i with v(i) 6= 0 is finite.

Sums and scalar multiples of vectors in R∞ are defined as coordinate-wise operations exactly as for
vectors in Rn, and so we can define linear transformations R∞ → R∞ by the same pair of conditions as
we use to define linear transformations Rn → Rm. (Can you write down the details?)

Now consider the functions T,U : R∞ → R∞ given by the shift operators

U




v1
v2
v3
...


 =


0
v1
v2
...

 and T




v1
v2
v3
...


 =


v2
v3
v4
...

 .

In words, U shifts a vector down by adding a zero row at the top, while T shifts a vector up by forgetting
the first row. Both of these functions are linear transformations. (Check this!)

We have T ◦ U = idR∞ since

T

U




v1
v2
v3
...



 = T




0
v1
v2
...


 =


v1
v2
v3
...

 .

However, U ◦ T 6= idR∞ since

U

T




v1
v2
v3
...



 = U




v2
v3
v4
...


 =


0
v2
v3
...

 .

Linear algebra is the study of the linear transformations Rn → Rm where n and m are finite numbers.
The study of linear transformations R∞ → R∞ is functional analysis (MATH 4063).

3 Subspaces of Rn

Returning to our usual convention, let n be a positive integer (not ∞).

Recall that 0 ∈ Rn denotes the zero vector 0 =


0
0
...
0

.

Subsets of Rn that are closed under scalar multiplication and addition are called subspaces. To be precise:

Definition. Let H be a subset of Rn. The subset H is a subspace if these three conditions hold:

1. 0 ∈ H.

2. u + v ∈ H if u, v ∈ H.

3. cv ∈ H if c ∈ R and v ∈ H.

Common examples

Rn is a subspace of itself.
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The set {0} consisting of just the zero vector is a subspace of Rn.

The empty set ∅ is not a subspace since it does not contain 0.

A subset H ⊂ R2 is a subspace if and only if H = {0} or H = R2 or H is a line through 0.

The span of any set of vectors in Rn is a subspace.

(Later, we will see that every subspace is the span of some set of vectors.)

Example. The set X of vectors v =

 v1
v2
v3

 ∈ R3 with v1 + v2 + v3 = 1 is not a subspace since 0 /∈ X.

The set H of vectors v =

 v1
v2
v3

 ∈ R3 with v1 + v2 + v3 = 0 is a subspace since if u, v ∈ H and c ∈ R

then
(u1 + v1) + (u2 + v2) + (u3 + v3) = (u1 + u2 + u3) + (v1 + v2 + v3) = 0 + 0 = 0

and
cv1 + cv2 + cv3 = c(v1 + v2 + v3) = 0

so u + v ∈ H and cv ∈ H.

Any matrix A gives rise to two subspaces, called the column space and null space.

Definition. The column space of an m× n matrix A is the subspace

ColA ⊂ Rm

given by the span of the columns of A.

Remark. If T : Rn → Rm is the linear function T (x) = Ax then ColA = range(T ).

Note that ColA = Rm if and only if Ax = b has a solution for each b ∈ Rm.

A vector b ∈ Rm belongs to ColA if and and only if Ax = b has a solution.

Definition. The null space of an m× n matrix A is the subspace

NulA ⊂ Rn

given by the set of vectors v ∈ Rn with Av = 0.

Proof that NulA is a subspace. If u, v ∈ NulA and c ∈ R then A(u + v) = Au + Av = 0 + 0 = 0 and
A(cv) = c(Av) = 0, so u + v ∈ NulA and cv ∈ NulA. Thus NulA is a subspace of Rn.

Remark. If T : Rn → Rm is the linear function T (x) = Ax then NulA = {x ∈ Rn : T (x) = 0}. This is
usually called the kernel of T .

Note: the column space is a subspace of Rm where m is the number of rows of A, while the null space
is a subspace of Rn where n is the number of columns of A.

At first, subspaces seem like big, complicated objects. But it turns out that each subspace is completely
determined by a finite amount of data. This data will be called a basis. Let H be a subspace of Rn.
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Definition. A basis for H is a set of vectors {v1, v2, . . . , vk} ⊂ H which are linearly independent and
have span equal to H.

The empty set ∅ is considered to be a basis for the zero vector space {0}.

Example. The vectors {e1, e2, . . . , en} ⊂ Rn where e1 =


1
0
0
...
0

, e2 =


0
1
0
...
0

, etc., is a basis for Rn.

We call this the standard basis of Rn.

Theorem. Every subspace H of Rn has a basis of size at most n.

Proof. If H = {0} then ∅ is a basis.

Assume H 6= {0}. Let B be a set of linearly independent vectors in H that is as large as possible. The
size of B must be at most n since any n+ 1 vectors in Rn are linearly dependent by a result proved in an
earlier lecture.

Let w1, w2, . . . , wk be the elements of B. Since B is as large as possible, if v ∈ H is any vector then
w1, w2, . . . , wk, v are linearly dependent so we can write c1v1 + c2v2 + · · · + ckvk + cv = 0 for some
numbers c1, c2, . . . , ck, c ∈ R which are not all zero. Since the vectors in B are linearly independent, we
must have c 6= 0 (why?) so it follows that

v = c1
c w1 + c2

c w2 + · · ·+ ck
c wk.

Thus, not only is B a set of linearly independent vectors, but these vectors also span H, so B is a basis.

Example. Let A =

 −3 6 −1 1 −1
1 −2 2 3 −1
2 −4 5 8 −4

.

How can we find a basis for NulA? Well, finding a basis for NulA is more or less the same task as finding
all solutions to the homogeneous equation Ax = 0. So let’s first try to solve that equation.

If we row reduce the 3× 6 matrix
[
A 0

]
, we get

[
A 0

]
∼

 1 −2 0 −1 3 0
0 0 1 2 −2 0
0 0 0 0 0 0

 = RREF(
[
A 0

]
).

This tells us that Ax = 0 if and only if

{
x1 − 2x2 − x4 + 3x5 = 0

x3 + 2x4 − 2x5 = 0.

Therefore x ∈ NulA if and only if

x =


x1

x2

x3

x4

x5

 =


2x2 + x4 − 3x5

x2

−2x4 + 2x5

x4

x5

 = x2


2
1
0
0
0

+ x4


1
0
−2

1
0

+ x5


−3

0
2
0
1

 .
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The vectors 


2
1
0
0
0

 ,


1
0
−2

1
0

 ,


−3

0
2
0
1




are a basis for NulA: we just computed that these vectors span the null space, and they are linearly
independent since each has a nonzero entry in a row (namely, either row 2, 4, or 5) whether the others
have zeros. (Why does this imply linear independence?)

This example is important: the procedure just described works to construct a basis of NulA for any
matrix A. The size of this basis will always be equal to the number of free variables in the linear system
Ax = 0. How to find a basis for NulA is something you should remember at the end of this course.

Example. Let B =


1 0 −3 5 0
0 1 2 −1 0
0 0 0 0 1
0 0 0 0 0

.

This matrix is in reduced echelon form.

Finding a basis for ColB is in some ways easier than finding a basis for NulB.

The columns of B automatically span ColB, but they might not be linearly independent.

The largest linearly independent subset of the columns of B will be a basis for ColB, however.

In our example, the pivot columns 1, 2 and 5 are linearly independent since each has a row with a 1
where the others have 0s. These columns span columns 3 and 4, so it follows that


1
0
0
0

 ,


0
1
0
0

 ,


0
0
1
0




is a basis for ColB.

This example was special since the matrix B was already in reduced echelon form. To find a basis of the
column space of an arbitrary matrix, we rely on the following observation:

Proposition. Let A be any matrix. The pivot columns of A form a basis for ColA.

Proof. This proof sketches the main ideas but doesn’t spell out all the details.

Suppose A is m×n. The reduced echelon form of A is obtained by multiplying A by an invertible matrix
E on the left, so we can write RREF(A) = EA.

If a1, a2, . . . , ak are the pivot columns of A, then E
[
a1 a2 . . . ak

]
is the m × k matrix

[
Ik
0

]
where the 0 means an (m− k)× n submatrix of zeros. These columns are linearly independent since if[

a1 a2 . . . ak
]
v = 0

for v ∈ Rk then

0 = E
[
a1 a2 . . . ak

]
v =

[
Ik
0

]
v =

[
v
0

]
which implies that v = 0.

Suppose w is a non-pivot column of A. The definition of reduced echelon form implies that the cor-
responding column Ew of RREF(A) = EA is in the span of Ea1, Ea2, . . . , Eak. (Why?) If we have
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Ew = c1Ea1 + · · ·+ ckEak then multiplying both sides by E−1 gives w = c1a1 + · · ·+ ckak so w is in the
span a1, a2, . . . , ak. Therefore the pivot columns of A span the other columns, and hence span ColA.

Since the pivot columns are linearly independent and have span equal to ColA, they form a basis.

Example. The matrix

A =


1 3 3 2 −9
−2 −2 2 −8 2

2 3 0 7 1
3 4 −1 11 −8


is row equivalent to the matrix B in the previous example. The pivot columns of A are therefore also
columns 1, 2, and 5, so 


1
−2

2
3

 ,


3
−2

3
4

 ,


−9

2
1
−8




is a basis for ColA.

Next time: we will show that if H is a subspace of Rn then all of its bases have the same size. The
common size of these basis is the dimension of H.
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