
MATH 2121 — Linear algebra (Fall 2017) Lecture 10

1 Last time: inverses and subspaces

To show that an n× n matrix A is invertible, all we have to do is check that (1) its columns are linearly
independent or (2) its columns span Rn. If either (1) or (2) holds, then the other property is also true.

If A is invertible then it has an inverse which is an n× n matrix A−1 with

AA−1 = A−1A = In =


1

1
. . .

1

 .

A subset H of Rn is a subspace if 0 ∈ H and u + v ∈ H and cv ∈ H for all u, v ∈ H and c ∈ R.

A subspace is a set which contains all linear combinations of vectors which are already in the set.

Example. Examples of subspaces of Rn:

• The set {0} containing just the zero vector.

• The set of all scalar multiples of a single vector.

• Rn itself.

• The span of any set of vectors in Rn.

• The range of a linear function T : Rk → Rn.

• The set of vectors v with T (v) = 0 for a linear function T : Rn → Rk.

The union of two subspaces is not necessarily a subspace. (Why?)

The intersection of two subspaces is a subspace, however. (Why?)

Definition. To any m× n matrix A there are two corresponding subspaces of interest:

1. The column space of A is the subspace ColA ⊂ Rm given by the span of the columns of A.

2. The null space of A is the subspace NulA ⊂ Rn given by the set of vectors v ∈ Rn with Av = 0.

It is not obvious from these definitions, but it will turn out that each subspace of Rm occurs as the
column space of some matrix. Likewise, each subspace of Rn occurs as the null space of some matrix.

Exercise you might want to at least think about: how would you come up with a matrix whose column
space or null space is a given subspace H? To answer this, you’ll probably need the notion of a basis.

Definition. A basis of a subspace H of Rn is a set of linearly independent vectors whose span in H.

The most important basis in linear algebra (and the only one that has a standard notation) is the standard
basis of Rn: this is the basis consisting of the vectors e1, e2, . . . , en where ei is the vector in Rn with 1 in
row i and 0 is all other rows.

The fundamental property of subspaces and bases:

Theorem. Every subspace H of Rn has a basis of size at most n.
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Let A be an m× n matrix.

How to find a basis of NulA.

1. Find all solutions to Ax = 0 by row reducing A to echelon form. Recall that xi is a basic variable
if column i of RREF(A) contains a pivot position, and that otherwise xi is a free variable.

2. Rewrite each basic variable in terms of the free variables, and then write

x =


x1

x2

...
xn

 = xi1

[
b1
]

+ xi2

[
b2
]

+ · · ·+ xik

[
bk
]

where xi1 , xi2 ,. . . , xik are the free variables and b1, b2, . . . , bk ∈ Rn are vectors whose entries do not
involve any variables.

3. The vectors b1, b2, . . . , bk then form a basis for NulA.

Example. Suppose A =

[
1 2 5 8
2 3 7 0

]
.

1. Then A ∼
[

1 2 5 8
0 −1 −3 −16

]
∼
[

1 0 −1 −24
0 1 3 16

]
so Ax = 0 iff

{
x1 − x3 − 24x4 = 0

x2 + 3x3 + 16x4 = 0.

2. This means x1, x2 are basic variables and x3, x4 are free variables. We have Ax = 0 if and only if
x1 = x3 + 24x4 and x2 − 3x3 − 16x4, which means

x =


x1

x2

x3

x4

 =


x3 + 24x4

−3x3 − 16x4

x3

x4

 = x3


1
−3

1
0

+ x4


24
−16

0
1

 .

3. Thus




1
−3

1
0

 ,


24
−16

0
1


 is a basis for NulA.

How to find a basis of ColA.

1. The pivot columns of A form a basis of ColA.

This looks simpler than the previous algorithm, but to find out which columns of A are pivot columns,
we have to row reduce A to echelon form, which takes just as much work as finding a basis of NulA.

Example. If A =

[
1 2 5 8
2 3 7 0

]
then columns 1, 2 have pivots so

{[
1
2

]
,

[
2
3

]}
is a basis for ColA.

2 Coordinate systems

Suppose H is a subspace of Rn.

Let b1, b2, . . . , bk be a basis of H.

Theorem. Let v ∈ H. There are unique coefficients c1, c2, . . . , ck ∈ R such that

c1b1 + c2b2 + · · ·+ ckbk = v.
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In other words, there is a unique vector

w =


c1
c2
...

ck

 ∈ Rk

such that v = Bw where B =
[
b1 b2 . . . bk

]
.

Proof. Since our basis spans H, there must be some coefficients with c1b1 + c2b2 + · · ·+ ckbk = v. If these
coefficients were not unique, so that we could write c′1b1 + c′2b2 + · · ·+ c′kbk = v for some different list of
numbers c′1, c

′
2, . . . , c

′
k ∈ R, then we would have

0 = v − v = (c1b1 + c2b2 + · · ·+ ckbk)− (c′1b1 + c′2b2 + · · ·+ c′kbk)

= (c1 − c′1)v1 + (c2 − c′2)v2 + · · ·+ (ck − c′k)vk.

Since our numbers are different, at least one of the differences ci − c′i must be nonzero, so what we just
wrote is a nontrivial linear dependence among the vectors b1, b2, . . . , bk. But this contradicts the condition
that elements of a basis be linearly independent.

Let B = (b1, b2, . . . , bk) be the list of basis vectors in some fixed order.

Given v ∈ H, define [v]B =


c1
c2
...

ck

 ∈ Rk as the unique vector with c1b1 + c2b2 + · · ·+ ckvk = v.

We call [v]B the coordinate vector of v in the basis B or just v in the basis B.

Example. If H = Rn and B = (e1, e2, . . . , en) is the standard basis then [v]B = v.

Example. If H = Rn and B = (en, . . . , e2, e1) then [v]B =


vn
...

v2
v1

.

Example. Let b1 =

 3
6
2

 and b2 =

 −1
0
1

 and v =

 3
12
7

.

Then B = (b1, b2) is a basis for H = R-span{b1, b2} ⊂ R3.

The unique w =

[
w1

w2

]
∈ R2 such that

 3 −1
6 0
2 1

w =

 3
12
7

 is found by row reduction:

 3 −1 3
6 0 12
2 1 7

 ∼
 1 0 2

3 −1 3
2 1 7

 ∼
 1 0 2

0 −1 −3
0 1 3

 ∼
 1 0 2

0 1 3
0 0 0

 .

The last matrix implies that w1 = 2 and w2 = 3 so [v]B =

[
2
3

]
.
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Example. If b1 = e1 − e2, b2 = e2 − e3, b3 = e3 − e4, . . . , bn−1 = en−1 − en and

v =


v1
v2
...

vn−1
−v1 − v2 − · · · − vn−1


then v ∈ H = R-span{b1, b2, . . . , bn−1} and

[v]B =



v1
v1 + v2

v1 + v2 + v3
v1 + v2 + v3 + v4

...
v1 + v2 + v3 + · · ·+ vn−1


∈ Rn−1.

The notation [v]B gives us an easy way to check the following important property:

Theorem. Let H be a subspace of Rn. Then all bases of H have the same number of elements.

Proof. Suppose B = (b1, b2, . . . , bk) and B′ = (b′1, b
′
2, . . . , b

′
l) are two ordered bases of H with k < l.

Then [b′1]B, [b′2]B, . . . , [b′l]B are l > k vectors in Rk, so they must be linearly dependent.

This means there exist coefficients c1, c2, . . . , cl ∈ R, not all zero, with

c1[b′1]B + c2[b′2]B + · · ·+ cl[b
′
l]B = 0.

But we have
c1[b′1]B + c2[b′2]B + · · ·+ cl[b

′
l]B = [c1b

′
1 + c2b

′
2 + · · ·+ clb

′
l]B.

(This is the key step; why is this true? Think about how [v]B is defined.)

Thus [c1b
′
1 + c2b

′
2 + · · ·+ clb

′
l]B = 0, so

c1b
′
1 + c2b

′
2 + · · ·+ clb

′
l =

[
b1 b2 · · · bk

]
[c1b
′
1 + c2b

′
2 + · · ·+ clb

′
l]B = 0.

(The first equality holds since by definition v = B[v]B for B =
[
b1 b2 · · · bk

]
.)

Since the coefficients ci are not all zero, this contradicts the fact that b′1, b
′
2, . . . , b

′
l are linearly independent.

This mean our original supposition that H has two bases of different sizes can’t hold.

3 Dimension

Points in the subspace H = R-span{b1, b2, . . . , bk} ⊂ Rn, while contained in the set of vectors Rn, are
completely determined by their coordinate vectors which belong to Rk.

The correspondence v 7→ [v]B is an invertible function H → Rk. We call this function an isomorphism
between H and Rk: its existence means that H “looks” the same as Rk.

For this reason we say that a subspace H with a basis of size k is k-dimensional. More generally:
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Definition. The dimension of a subspace H is the number of vectors in any basis of H.

We denote the dimension of H by dimH. This number belongs to {0, 1, 2, 3, . . . }.

If H = {0} then we define dimH = 0.

Example. We have dimRn = n.

If H is the set of all vectors of the form



v1
v2
...

vk
0
0
...
0


∈ Rn, then H is a subspace and dimH = k.

Note that e1, e2, . . . , ek is a basis for H.

A line in R2 through the origin is a 1-dimensional subspace.

Let A be an m× n matrix.

The processes we gave to construct bases of NulA and ColA imply that:

Corollary. The dimension of NulA is the number of free variables in the linear system Ax = 0.

Corollary. The dimension of ColA is the number of pivot columns in A.

There is a special name for the dimensional of the column space of a matrix:

Definition. The rank of a matrix A is rankA = dim ColA.

Putting everything together gives the following pair of important results.

Theorem (Rank-Nullity theorem). If A is a matrix with n columns then rankA + dim NulA = n.

Proof. Every column of A which is not a pivot column indexes a free variable in the system Ax = 0, so

n = #{ pivot columns of A }+ #{ non-pivot columns }
= #{ pivot columns of A }+ #{ free variables in Ax = 0 }
= dim ColA + dim NulA

= rankA = dim NulA.

Theorem (Basis theorem). If H is a subspace of Rn with dimH = p then

1. Any set of p linearly independent vectors in H is a basis for H.

2. Any set of p vectors in H which span H is a basis for H.
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Proof. Suppose we have p linearly independent vectors in H. If these vecttors do not span H, then adding
a vector which is in H but not in their span would produce a set of p+ 1 linearly independent vectors in
H. If this larger set still does not span H, then adding a vector from H that is not in the span gives an
even larger linearly independent set of p + 2 vectors. Continuing in this way must eventually produce a
basis for H, but this basis will have more than p elements, contradicting dimH = p.

Suppose we instead have p vectors which span H. If these vectors are not linearly independent, then
one of the vectors is a linear combination of the others. Remove this vector; we then have p− 1 vectors
which span H. If these vectors are still not linearly independent, then one is a linear combination of
the others and removing this vector gives a set of p − 2 vectors which span H. Continuing in this way
must eventually produce a basis for H, but this basis will have fewer than p elements, contradicting
dimH = p.

Corollary. If H ⊂ Rn is an n-dimensional subspace then H = Rn.

Proof. If H has a basis with n elements then these elements are linearly independent, so form a basis for
Rn. Then every vector in Rn is a linear combination of the basis vectors, so belongs to H.

Corollary. Let A be an n× n matrix. The following are equivalent:

(a) A is invertible.

(b) The columns of A form a basis for Rn.

(c) rankA = dim ColA = n.

(d) dim NulA = 0.

Proof. We have already seen that (a) and (b) are equivalent.

(c) holds if and only if the columns of A span Rn which is equivalent to (a).

(d) holds if and only if the columns of A are linearly independent which is equivalent to (a).
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