
MATH 2121 — Linear algebra (Fall 2017) Lecture 11

1 Last time: theorems about bases and rank

A subspace of Rn is a nonempty subset H with the property that u + v ∈ H and cv ∈ H whenever
u, v ∈ H and c ∈ R. (Requiring H to be nonempty amounts to the same thing as requiring that 0 ∈ H.)

A basis of a subspace is a linearly independent set of vectors whose span in the whole subspace.

Two crucial facts:

• Every subspace has a basis.

• Every basis of a given subspace has the same number of elements.

The dimension of a subspace is the common size of all of its bases. If H is a subspace with dimH = p
then any set of p vectors in H which are linearly independent, or which span H, form a basis for H.

The dimension of Rn is n, while the dimension of {0} is 0.

Be sure to know how to (1) construct a basis of NulA and (2) construct a basis of ColA.

The following theorem tells us how to compute the dimensions of NulA and ColA.

Theorem (Rank theorem). Let A be an m× n matrix.

1. The dimension of the nullspace NulA = {v ∈ Rn : Av = 0} is the number of free variables in the
linear system Ax = 0.

2. The dimension of the column space ColA (given by the span of the columns of A) is the number
of pivot columns in A.

3. It holds that rankA + dim NulA = n, where we define rankA = dim ColA.

(Easy exercise: why does the third statement follow from the first two?)

Corollary. For an n× n matrix A, the following are equivalent:

1. A is invertible.

2. rankA = n.

3. dim NulA = 0.

If U and V are two sets then we write U ⊂ V to indicate that every element of U is also an element of
V . The only way that we can have both U ⊂ V and V ⊂ U is if U = V .

Last time we also proved this proposition:

Proposition. Suppose U, V are two subspaces of Rn with U ⊂ V . Then dimU ≤ dimV , and if the two
subspaces have the same dimension, so that dimU = dimV , then U = V .

Another way of defining a basis of a subspace H of Rn is as a set of vectors b1, b2, . . . , bk with the property
that if m is any positive integer and v1, v2, . . . , vk are any vectors in Rm, there there is a unique linear
transformation T : H → Rm with T (bi) = vi for i = 1, 2, . . . , k.

(For our applications, it is not essential to know how to prove this. But if you wanted to try: first show
that the existence of such a linear transformation T follows from the linear independence of b1, b2, . . . , bk.
Then check that T is unique exactly when b1, b2, . . . , bk span H.)

If B = (b1, b2, . . . , bk) is an ordered basis of a k-dimensional subspace H, then we define

[·]B : H → Rk
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as the unique linear function with [bi]B = ei ∈ Rk for i = 1, 2, . . . , k.

Recall that ei ∈ Rk is the vector with 1 in row i and 0 in all other rows.

We call [v]B the coordinate vector of v ∈ H in the basis B.

2 Determinants

The subject of the next few lectures is the determinant of a square matrix. We will approach this first
as a somewhat obscure-seeming function with a few special properties. Despite this appearance, the
determinant ends up being rather ubiquitous and important in various parts of math and physics, for
example, in computing integrals in multivariable calculus and defining eigenvalues later in this course.

Our first “definition” of the determinant is via the following theorem, which essentially says that a set of
three special properties uniquely identifies the determinant among all functions on n× n matrices.

Theorem. Let n be any positive integer. There exists a unique function

det : {n× n matrices} → R,

called the determinant, with the following properties:

(i) det In = 1. In words: the determinant of the identity matrix is 1.

(ii) If a1, a2, . . . , an ∈ Rn and 1 ≤ i < j ≤ n then

det
[
a1 · · · ai · · · aj · · · an

]
= −det

[
a1 · · · aj · · · ai · · · an

]
In words: interchanging two columns in an n× n matrix reverses the sign of the determinant.

(iii) If a1, a2, . . . , an, u, v ∈ Rn then det
[
a1 · · · ai−1 u + v ai+1 · · · an

]
is equal to

det
[
a1 · · · ai−1 u ai+1 · · · an

]
+ det

[
a1 · · · ai−1 v ai+1 · · · an

]
,

and if c ∈ R then det
[
a1 · · · ai−1 cv ai+1 · · · an

]
is equal to

c · det
[
a1 · · · ai−1 v ai+1 · · · an

]
.

In words: if all but one column of an n × n matrix are fixed, and the determinant is viewed as a
function of the remaining column, then we get a function Rn → R which is linear.

This is a super abstract way of defining a function. At this point there is a lot to digest, and it is not at
all clear, even if we knew the theorem were true, how we could compute detA for any particular square
matrix. However, the advantage in abstraction is that we can quickly derive several different concrete
formulas for the determinant, each of which would be hard to derive from the others.

We spend the rest of this lecture proving the theorem. To do this, we start by assuming there exists a
function det with the given properties. We will use these properties to narrow the possibilities for det
down to one function given by a certain formula, and then check that this formula does satisfy (i)-(iii).

Let A be an n× n matrix with columns a1, a2, . . . , an ∈ Rn.

Lemma. If A has two equal columns then detA = 0.

Proof. Suppose A =
[
a1 a2 . . . an

]
where ai = aj for i < j.

Then detA = −det
[
a1 · · · aj · · · ai · · · an

]
= −detA so 2 detA = 0 and detA = 0.

Corollary. If A has a column which is a linear combination of its other columns, i.e., if the columns of
A are not linearly independent, then detA = 0.
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Proof. If A =
[
a1 a2 . . . an

]
and a1 = c2a2 + c3a3 + · · ·+ cnan for some numbers c2, c3, . . . , cn ∈ R,

then detA = c2 det
[
a2 a2 . . . an

]
+ c3 det

[
a3 a2 a3 . . . an

]
+ · · ·+ cn det

[
an a2 . . . an

]
.

Each determinant in the sum is zero by the previous lemma so detA = 0.

If a different column of A is a linear combination of the other columns, then define B by swapping that
column and the first column of A. Then detA = −detB and the argument in the previous paragraph
shows that detB = 0, so again detA = 0.

This leads to an intriguing nontrivial property of the determinant.

Corollary. If A is not invertible then detA = 0.

Proof. If A is not invertible then its columns are not linearly independent.

With these facts, we can already derive an explicit formula for detA when n = 1 or n = 2.

Example. For 1× 1 matrices we have det
[
a
]

= adet
[

1
]

= a.

Example. For 2× 2 matrices we have

det

[
a b
c d

]
= det

[ [
a
0

]
+

[
0
c

] [
b
0

]
+

[
0
d

] ]
= det

[
a b
0 0

]
+ det

[
a 0
0 d

]
+ det

[
0 b
c 0

]
+ det

[
0 0
c d

]
= abdet

[
1 1
0 0

]
︸ ︷︷ ︸

=0

+addet

[
1 0
0 1

]
︸ ︷︷ ︸

=det I2=1

+bcdet

[
0 1
1 0

]
︸ ︷︷ ︸
=− det I2=−1

+cddet

[
0 0
1 1

]
︸ ︷︷ ︸

=0

= ad− bc.

The first equality just rewrites the two columns of our first matrix as sums of simpler vectors. The second
and third equalities follow by extensive use of property (iii) in the theorem defining det.

A formula to remember:

det

[
a b
c d

]
= ad− bc

3 Permutation matrices

We digress to discuss a particular class of square matrices whose determinants are easy to compute.

A permutation matrix is an n×n matrix whose entries are all 0 or 1, and which has exactly one nonzero
entry in each row and in each column.

Let Sn be the set of n× n permutation matrices.

Example. The elements of S2 are

[
1 0
0 1

]
and

[
0 1
1 0

]
.

Example. The elements of S3 are 1 0 0
0 1 0
0 0 1

  1 0 0
0 0 1
0 1 0

  0 1 0
1 0 0
0 0 1

  0 1 0
0 0 1
1 0 0

  0 0 1
1 0 0
0 1 0

  0 0 1
0 1 0
1 0 0

 .

Let Rn be the set of n × n matrices whose entries are all 0 or 1, and which have exactly one nonzero
entry in each column (but possibly multiple nonzero entries in a given row).
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Example. The elements of R2 are

[
1 0
0 1

]
,

[
1 1
0 0

]
,

[
0 1
1 0

]
, and

[
0 0
1 1

]
.

Note that Sn ⊂ Rn. The size of Sn is n! while the size of Rn is nn.

Lemma. If X ∈ Rn but X /∈ Sn then detX = 0.

Proof. In this case X must have two equal columns.

Given X ∈ Sn, define inv(X) as the number of 2× 2 submatrices of X equal to

[
0 1
1 0

]
.

To form a 2× 2 submatrix of X, choose any two rows and any two columns, not necessarily adjacent or
related, and then take the 4 entries in those rows and columns.

Equivalently, inv(X) is the number of pairs of 1s in X with one 1 below and to the left of the other.

For example,

inv

 0 0 1
1 0 0
0 1 0

 = 2, inv

 1 0 0
0 1 0
0 0 1

 = 0, inv

 0 0 1
0 1 0
1 0 0

 = 3.

Lemma. If X ∈ Sn then detX = (−1)inv(X).

Proof. If X ∈ Sn and inv(X) > 0, then X must have two adjacent columns where the 1 in the left column
is below the 1 in the right column. Form Y by interchanging these two columns. One can check (try
drawing a picture of the matrices X and Y ) that inv(Y ) = inv(X)− 1. We know that detY = −detX.

If inv(Y ) > 0, the construct a permutation matrix Z from Y in the same way. Continuing this process
will eventually give a permutation matrix A ∈ Sn with detX = (−1)inv(X) detA and inv(A) = 0. But the
only permutation matrix A ∈ Sn with inv(A) = 0 is A = In, so det(A) = 1 and det(X) = (−1)inv(X).

4 A formula for detA

Given a matrix X ∈ Rn and an arbitrary n× n matrix A, define

Π(X,A) = the product of the entries of A in the nonzero positions of X.

For example,

Π

 0 0 1
1 0 0
0 1 0

 ,

 a b c
d e f
g h i

 = cdh.

Using this notation, we can give the first concrete description of the determinant. This description is
messy, but it would be even messier to derive the properties in our first theorem from this formula.

Theorem. Suppose A is an n× n matrix. Then

detA =
∑

X∈Sn

Π(X,A)(−1)inv(X)

where the notation
∑

X∈Sn
means “compute Π(X,A)(−1)inv(X) for each n × n permutation matrix X

and then take the sum of all of the resulting numbers.”

The function given by this formula has the defining properties of the determinant. This confirms our first
theorem: the only function with the properties we originally ascribed to the determinant is this formula.
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This theorem subsumes our first theorem. Before proving it, let’s do an example.

Example. We can use the general formula for detA to compute the determinant of a 3× 3 matrix.

Suppose A =

 a b c
d e f
g h i

. Then our formula becomes

detA = Π

 1
1

1

 , A

 (−1)0 + Π

 1
1

1

 , A

 (−1)1 +

Π

 1
1

1

 , A

 (−1)1 + Π

 1
1

1

 , A

 (−1)2 +

Π

 1
1

1

 , A

 (−1)2 + Π

 1
1

1

 , A

 (−1)3 = aei− afh− bdi + bfg + cdh− ceg.

The 0s are omitted in the permutation matrices to improve readability. We can rewrite this as

det

 a b c
d e f
g h i

 = a(ei− fh)− b(di− fg) + c(dh− eg)

Note that each term in parentheses is the determinant of a 2× 2 submatrix of A.

Next time we will see that this type of formula can be generalised to higher dimensions.

Proof of theorem. The most difficult part of the proof is our notation, which gets pretty complicated.

Suppose

A =


a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

an1 an2 . . . ann

 .

We can then also write

A =
[ ∑n

i=1 ai1ei
∑n

j=1 aj2ej . . .
∑n

k=1 aknek
]
.

In words: express each column of A as the linear combination of the basis vectors e1, e2, . . . , en of Rn.

Using the fact that the determinant is linear as a function of each column of A, it follows that

detA = det
[ ∑n

i=1 ai1ei
∑n

j=1 aj2ej . . .
∑n

k=1 aknek
]

=

n∑
i=1

ai1 · det
[
ei

∑n
j=1 aj2ej . . .

∑n
k=1 aknek

]
=

n∑
i=1

n∑
j=1

ai1aj2 · det
[
ei ej . . .

∑n
k=1 aknek

]
...

=

n∑
i=1

n∑
j=1

· · ·
n∑

k=1︸ ︷︷ ︸
n summations

ai1aj2 · · · akn︸ ︷︷ ︸
=Π(X,A)

det
[
ei ej . . . ek

]︸ ︷︷ ︸
this is a matrix X ∈ Rn

.
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If this sequence of equalities is confusing, try to see if the corresponding step in our calculation of

det

[
a b
c d

]
makes more sense. We are really just generalising that calculation from 2 to n dimensions.

Key observation: the matrix
[
ei ej . . . ek

]
varies over all elements of Rn as the indices i, j, . . . , k

vary in the summations
∑n

i=1

∑n
j=1 · · ·

∑n
k=1. This means we can rewrite the last formula as

detA =
∑

X∈Rn

Π(X,A) detX.

If X ∈ Rn then detX = (−1)inv(X) if X ∈ Sn and otherwise detX = 0. Therefore, we actually have

detA =
∑

X∈Sn

Π(X,A)(−1)inv(X). (*)

This formula was computed under the assumption that a function det exists with the properties in our
first theorem. This means that if our first theorem is true, then the determinant must be given by the
formula we just derived. The last thing we need to do is to check that the function (*) actually has the
properties we require for the determinant.

This is not too hard, and mostly involves some exercises in algebra manipulating the expression (*):

1. We have det In =
∑

X∈Sn
Π(X, In)(−1)inv(X) = 1 .

Proof. This holds since Π(X, In) = 0 unless X = In if X ∈ Sn.

2. If we interchange two columns in A then detA changes by a factor of −1.

Proof. Let X̃ be the matrix given by interchanging columns i and j in X. If X ∈ Sn then X̃ ∈ Sn

and inv(X̃) − inv(X) is an odd number. (This is not obvious but can be shown by an elementary

argument: try drawing a picture of X compared to X̃.) Hence (−1)inv(X) = −(−1)inv(X̃).

If X ∈ Sn then Π(X,A) = Π(X̃, Ã) for all matrices A. (Why?)

Thus detA =
∑

X∈Sn
Π(X,A)(−1)inv(X) = −

∑
X∈Sn

Π(X̃, Ã)(−1)inv(X̃) = −det Ã.

3. If we fix all but one column of A, then the formula (*) is linear as a function Rn → R of the
remaining column.

Proof. If column i of A is the vector

x =


x1

x2

...
xn

 =


a1i

a2i

...
ani


and all other columns of A are fixed numbers, then the formula (*) reduces to a function

detA = c1x1 + c2x2 + . . . cnxn =
[
c1 c2 . . . cn

]


x1

x2

...
xn

 (**)

where c1, c2, . . . , cn are some numbers depending only on the other columns of A. To see why this
is true, note that for each X ∈ Sn the value of Π(X,A)(−1)inv(X) is ±1 times the product of n
entries in A, only one of which occurs in column i.

The formula (**) shows that as a function x, the determinant detA is linear.
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This confirms that (*) does have the properties we stated in our first theorem.

The formula detA =
∑

X∈Sn
Π(X,A)(−1)inv(A) is not an efficient way of computing the determinant of

most matrices since the sum involves a huge number of terms if n is large. There are 2 terms for n = 2,
6 for n = 3, 24 terms for n = 4, and 120 terms for n = 5.

Next time: more properties of determinants and how to compute them practically.

7


	Last time: theorems about bases and rank
	Determinants
	Permutation matrices
	A formula for detA

